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ABSTRACT

Past research into file type identification has employed many different techniques in an attempt
to accurately classify files and file fragments including N-gram analysis. However, naı̈ve appli-
cation of n-grams breaks down when handling n-grams that are greater than two bytes, due to the
sparseness of the feature. As a result, other researchers have generally ignored long n-grams for
filetype identification. This thesis explores the use of long n-grams for whole file and file frag-
ment classification by building feature distributions of commonly occurring n-grams for single
filetypes and using those distributions to classify unknown files and file fragments. This thesis
also utilizes summarized n-grams in order to “collapse” similar n-grams within a file type into
common n-grams. The algorithms developed to both generate and compare unknown files are
presented as well as results from an experiment that was conducted using another researcher’s
data set.
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CHAPTER 1:
Introduction

1.1 Background
Filetype identification describes a process of determining the “type” of a file. By “type” we
typically mean a name that describes the file’s content (in the case of an ASCII or HTML
file); the data structure associated with the file (in the case of JPEG images); or the name
of the application program that created the file (in the case of a Microsoft Word document
file). Filetypes can be arranged in a hierarchy (Figure 1.1); good filetype identification should
produce the type of the highest level of abstraction. For example, a webpage should be identified
as HTML, not ASCII. File fragment type identification applies this process to fragments taken
from within files.

A file’s “type” is often described by its association, through its file extension, to a particular
application that handles files with that particular extension. However, the description of the file’s
contents based solely on a file’s extension does not accurately describe what data is contained
within the file itself. Primitive data is the most basic form data can be in. These forms can be
textual, binary, and random. Compression and encryption adds to the complexity of file type
identification since a compressed or encrypted object will have distinct patterns for which file
type identification may be impossible without decompression or decryption. A file can consist
of only one type of primitive data or be built using blocks of different types of primitive data
and arranged in a particular manner that is distinct to the filetype. In the scope of this thesis,
the descriptions of filetype for the files used in the learning and test sets take into account the
primitive data type(s) present within a file, the manner in which the primitive data types are
arranged, and the associated applications that are used to read and write to the files.

Filetype identification can be used to verify that a filetype matches its file extension; to identify
the type of a byte string that lacks an extension; or to identify the type of file that a fragment may
have originated from. For example, a forensic analyst may search for all files on a computer that
are PDF files because they may hold some evidence pertinent to an ongoing case. Searching
for files based on the “.pdf” file extension does not guarantee that these files are Adobe Acrobat
files, nor does it guarantee that there are not other files that are PDFs but lack the extension.
Additionally, when an analyst recovers file fragments from a hard drive, it is useful to be able
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to determine from what types of files those fragments originate in order to get an idea of what
content may have been stored previously on the drive.

To date, the research community’s main approach to file type identification has been to use
statistical models based on character frequencies and bigrams to predict filetype. This thesis
shows that performance is dramatically improved by using longer n-grams common to multiple
training files as predictors of filetype.

An n-gram is a string of bytes of n length. N-gram usage within the scope of filetype identifica-
tion is not a new approach. However, previous approaches only utilized short n-grams: n-grams
of one to two bytes in length. The long n-gram approach tries to detect strings of n-grams that
occur in multiple exemplars of a specific filetype. These long n-grams are then used as features
in a machine learning classifier that differentiates files and file fragments of different types.

Detecting the distinguishing characteristics of a filetype is a difficult task. Individual bytes
within a file can represent any type of information: text, numerical values coded in decimal
or binary, piece of compressed data, piece of encrypted data, etc. These individual bytes are
formed into blocks of data, which are in turn combined to form files. Although the meaning of
the bytes can be readily inferred when presented to the appropriate program, the forensic inves-
tigator may not have the correct program. Also, some byte arrangements may have ambiguous
codings. Being able to understand these codings is important to enable automated forensic
processing.

One way to identify filetype is to identify distinguishing characteristics. These characteristics
can be used as features in a traditional machine learning classifier. There has been more than
a decade of research on this problem. It is complicated by many factors. Some characteristics
may uniquely identify a single filetype, while others may identify several possible filetypes or
rule others out. Some characteristics may only be relevant when present at certain locations
within a file. For example, the string JFIF identifies a JPEG, but only when present near the
beginning of a file. This makes fragment identification harder as the location of the fragment
in the file is generally unknown. A danger when using machine learning algorithms to identify
file type is that the algorithms may be trained on a feature that is not indicative of filetype. For
example, a system that is trained to distinguish JPEG files from HTML files may actually be
inadvertently be trained not on the HTML vocabulary, but on the frequency of n-grams in the
HTML files’ English text. Such a system might be unable to recognize HTML files containing
Arabic text.
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1.1.1 Filetype Identification of Complete Files
There are two closely related yet different problems with filetype identification: identifying the
type of complete files and identifying the type of file fragments. Whole file identification is
relatively straight forward for known filetypes as long as the file is intact. Two approaches to
whole file identification involve searching for file header/footer information, and attempting to
decode or interpret the file’s internal structures. Techniques utilizing this approach use libraries
and signature databases.

Simple file formats are formats that contain a single type of primitive data. Text files, com-
pressed files, and encrypted files are examples of simple file formats. The structuring within
these simple formats will be characteristic of the primitive data that is contained within. For
textual files, individual byte values will cluster around the values of printable ASCII characters
and the distribution of n-grams will reflect the characteristics of the written language. For com-
pressed and encrypted file formats, individual byte values will be evenly distributed and there
will be no common n-grams. However, the header and footer information necessary to perform
the decompression or decryption of these files will be present in these files and can be used as a
signature for filetype identification.

While both compressed and encrypted data are indeed primitive data, there still remains the
question of what data is contained within the compressed or encrypted data. If the algorithm
used to compress or encrypt the data can be determined, then it is frequently possible to uncom-
press or decrypt the data and perform further identification.

Complicating matters further still, many common filetypes are container files. Container files
are files that have the ability to encapsulate different types of data within them. Examples of
container files are Microsoft Word Document files, ZIP files, and Adobe Acrobat files. For ex-
ample, PDF files can directly embed files of a different filetype such as JPEG files. Container
files have fields that mark the locations of encapsulated data and appear as internal structures
that are distinct to the filetype. Whole file identification can use these structures within a con-
tainer file as distinct characteristics of its filetype.

1.1.2 File Fragment Identification
File fragment identification is significantly more complex. With whole files, header/footer in-
formation and any internal structures that a file may contain are intact. However, a file fragment
can originate from any location in a file: header/footer and internal structures may not be present
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in the fragment, making identification difficult. File fragment identification has so far relied on
the following general ideas: statistical distributions of bytes, recognizing internal structures of
file types, entropy measurements, and n-gram analysis. Whole file identification projects have
had successes at being able to accurately identify filetype. However, file fragment identification
has had limited success.

The hardest part about file fragment identification is the fact that, for a given a file fragment,
there is no way to tell the offset in the original file from which it came from. Many filetypes
can be identified by the structure of the whole file without having to rely solely on header/footer
information. JPEG and MP3 files are such examples, as both have structuring data distributed
throughout the file (segments in a JPEG and frames in an MP3) that can be predictors of the
filetype when the header/footer information is not present. However, file fragments can be
considerably smaller in size (i.e.,: a 512-byte sector from a hard drive) than the original file.
Bytes within the fragment may lack the structuring information, making their type ambiguous.
Without any reference as to where the fragment originated, the fragment’s type may not be
identifiable.

The majority of file fragment approaches rely on characteristics of a whole file to be present
within the fragment itself. For instance, a file fragment that originated from a compressed file
should have the same characteristic high data entropy. However, there are a multitude of file-
types that employ compression within the format to enable efficient storage. At a fragment
level, these filetypes will be difficult to differentiate because high entropy data will have rela-
tively even distributions of bytes that can look the same although they are of different filetypes.

Another difficulty in to the matching of fragments to filetypes are file containers that can contain
multiple primitive types. In this case, it would be impossible to determine if a fragment is
the primitive type or a primitive that has been embedded in a container. This causes many
classification errors.

1.1.3 Internal Structuring of Files
At the highest level, all files are a collection of bytes. In order for an application to be able to
read and write to a particular file of a filetype, it needs to be designed to properly handle the
properties of the targeted filetype that are contained in the encoding of a file header/footer and
a file’s metadata. These properties give filetypes the ability to structure their data in a standard
way and provide for logical access to a file’s content. Structuring has to be common among files
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of a given filetype in order to allow applications access to the data from the files. Therefore, the
structuring of a filetype can be used as distinctive characteristics for filetype prediction.

Figure 1.1 shows some exemplar filetypes arranged within a tree structure. Under the root node,
the figure lists five exemplar categories of filetypes. These categories all package their relative
data in a specific way. For example, chunk based files use markers to signal the beginning of
a new chunk of data, directory based files use a directory system to store data, encapsulated
filesystem filetypes mirror the logical layouts of common filesystems, and stream based file-
types (such as the ones listed in Figure 1.1) use packets to store a data-stream for playback
of audio/visual content. For each of the examples given, one could use the structuring of the
filetypes for filetype identification since the structuring provides distinctive byte patterns or n-
grams. In turn, if an unknown file is discovered to contain a distinctive n-gram associated with
a known filetype, then the filetype of the unknown file can be determined with some degree of
confidence.

While chunk based, directory based, encapsulated filesystem based, and stream based provide
important structuring data, one filetype from Figure 1.1 was left out of the previous paragraph’s
discussion: textual based files. Textual based files, like the ones shown in Figure 1.1, have
extremely primitive structuring and in some cases none at all (TXT files). Filetypes such as
comma separated value (CSV) or true-type fonts (TTF) have a structure. However, the structure
consists of a single ASCII value that occurs with a much greater frequency than any other
ASCII character in the file (the ASCII comma value for CSV files and the ASCII “tab” value
for TTF). While these files have a structure associated with them, single byte values cannot
provide enough of a distinctive n-gram. Textual based files (as will be presented within this
thesis) make precise automatic filetype identification difficult using the long n-gram approach
due to the lack of structuring and risk making filetype predictions based on a file’s content rather
than the structure of the file.
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Figure 1.1: File hierarchy of some exemplar filetypes
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1.2 Motivation
The goal of this research is to determine if long n-grams are useful predictors of a file or file
fragment’s filetype. Previous research limiting the size of the n-grams to lengths of one to two
bytes could very well miss n-grams of greater lengths that are indicative to a specific filetype.

Primitive data may have distinct characteristics associated with it. These characteristics may
come in the form of long n-grams in which case the presence of these long n-grams in primi-
tive data would indicate the file or file fragment’s filetype. However, techniques for analyzing
n-gram characteristics within files have been limited to date to short n-grams of one to two
characters in length. This appears to be the result of a common implementation approach, not
the underlying science.

Previous researchers have used n-dimensional arrays to hold all counts of the occurrences of the
n-grams in a file and keep track of the n-grams that did not appear. These methods easily handle
n-grams of length two since there are only 65,536 possible 2-grams (256 × 256). However,
with each additional byte added to the n-gram’s length, the size of the array required to store
all counts of n-grams increases exponentially. This exponential growth creates unsatisfiable
memory constraints. It also breaks classical machine learning algorithms as the data contained
within such arrays become too sparse to classify. Therefore, these technical approaches do not
scale well for long n-grams.

The approach presented within this thesis searches multiple examples of a filetype for com-
monly occurring long n-grams and then uses these long n-grams as predictive features. That is,
the long n-grams are used to build a dictionary that is specific to and characteristic of each file-
type. Since the presence of these features is used to identify a file, there is no need to keep track
of n-grams that did not occur within the file (as other researchers have done). A distribution of
the distinct characteristics or features of a filetype can be generated through sampling sets of
files.

Throughout the course of this thesis, the term long n-gram will refer to n-grams with sizes
greater than 2-bytes. The frequency of occurrences of a long n-gram within a single file is not
important: what is necessary is that the long n-gram is present in a majority (or all) of the files
of a single filetype. Likewise, there is no requirement that all long predictive n-grams be of the
same length. In fact, they are not.

The approach developed here is based on an observation as to how humans perform manual
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filetype identification. In our experience, humans do this by looking for sequences of characters
that they recognize from having seen many other exemplar files of a given type. For example,
Figure 1.2 shows the fist 1024 bytes of the PDF file of a previous version of this thesis. Casual
inspection of this figure shows that some of the strings are readily recognizable as conferring
type, while others are clearly aligned with the document’s contents. For example, the string
%PDF-1.4 is a header readily associated with PDF files, while /Length, /FlateDecode,
endstream and endobject are all associated with the PDF vocabulary. On the other hand,
/nps_logo_3clr_cymk.pdf is the file name of the NPS logo that was included in the
thesis document and is indicative of the file’s content, not its type.

1.3 Outline of This Thesis
Chapter 2 of this thesis presents previous research into filetype identification of both complete
files and file fragments in order to give the reader a solid background on filetype identification
research to date. Chapter 2 also presents various implementation that have been built on the
research presented in order to make the reader aware of the various tools available to preform
filetype identification.

Chapter 3 presents the concept and intuition of using long n-grams for filetype identification.
This chapter includes multiple figures in order to help illustrate how the long n-gram approach
is useful.

Chapter 4 presents experiments conducted using the long n-gram appraoch with software de-
velped for this thesis research.

Appendices contain lists of the files and file fragments utilized for the experiments presented in
Chapter 4.
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0000 25 50 44 46 2d 31 2e 34 0a 25 d0 d4 c5 d8 0a 34 %PDF-1.4.%.....4
0010 20 30 20 6f 62 6a 20 3c 3c 0a 2f 4c 65 6e 67 74 0 obj <<./Lengt
0020 68 20 35 39 36 20 20 20 20 20 20 20 0a 2f 46 69 h 596 ./Fi
0030 6c 74 65 72 20 2f 46 6c 61 74 65 44 65 63 6f 64 lter /FlateDecod
0040 65 0a 3e 3e 0a 73 74 72 65 61 6d 0a 78 da a5 54 e.>>.stream.x..T
0050 cb 6e db 30 10 bc fb 2b 78 94 80 8a e1 f2 25 b2 .n.0...+x.....%.
0060 3d a9 b6 ec a8 b0 e5 d4 52 0a 04 69 0e 7e 28 a9 =.......R..i.˜(.
0070 50 bf 2a db 29 fc f7 5d 89 72 6a a7 45 73 28 04 P.*.)..].rj.Es(.
0080 88 14 77 38 c3 9d 5d 8a 91 27 c2 c8 a0 c3 de 18 ..w8..]..’......
0090 01 df 8c 00 01 ab 88 12 82 86 96 93 f9 aa f3 e3 ................
00a0 25 50 bf ff b6 70 95 ac 80 f4 36 9d cf f8 9c 42 %P...p....6....B
00b0 41 cd 12 9c d1 7c cc 3b 57 7d 09 84 4b 1a 9a 10 A....|.;W}..K...
00c0 48 fe 48 b8 56 54 2b 4b 14 13 d4 32 49 f2 05 b9 H.H.VT+K...2I...
00d0 f7 52 9f 33 2f f2 41 2a ef 8b 0f 42 79 d1 d0 7f .R.3/.A*...By...
00e0 c8 3f 91 40 03 65 1c 39 b9 a5 c6 18 07 be 19 67 .?.@.e.9.......g
00f0 f9 60 12 f5 6e 7d 5d 6f b2 ca cb e3 06 2d 0d 15 .‘..n}]o.....-..
0100 e2 15 38 eb 5e 8f c7 0d 59 73 10 90 54 48 cd eb ..8.ˆ...Ys..TH..
0110 83 04 02 e1 1a 0f 2d 81 1a 29 1c 7c 34 4e f3 78 ......-..).|4N.x
0120 12 df f9 96 7b ef fc 80 2b e6 75 a3 61 d2 1f 4f ....{...+.u.a..O
0130 d2 24 7a 61 39 4b 47 6a aa 01 35 71 e4 42 3b 92 .$za9KGj..5q.B;.
0140 fc 3a ce 92 ec b7 26 50 ab 94 d3 34 96 82 42 78 .:....&P...4..Bx
0150 c8 28 53 a1 83 f7 93 61 ec a4 f2 bb 9b 76 96 f4 .(S....a.....v..
0160 e2 34 4f fa 49 d7 e5 97 8c 53 b7 7e 9b 25 e9 c0 .4O.I....S.˜.%..
0170 4d d3 00 4d 18 9d 64 e4 b9 0c f0 10 e7 12 9d d0 M..M..d.........
0180 54 32 70 32 b3 a3 b3 54 30 1a 02 bf 8c 4d 8e d3 T2p2...T0....M..
0190 75 9b 2d 75 e3 68 7a 2c aa 66 43 9d 6c e3 ea 19 u.-u.hz,.fC.l...
01a0 9e 33 26 1d 1b 48 4e b9 0e 31 2c d0 80 36 9c 7f .3&..HN..1,..6..
01b0 2b 76 e5 ce 11 45 8b e7 72 b7 a9 de fb 01 30 a3 +v...E..r.....0.
01c0 c1 eb 55 be 52 1e aa 08 60 5e 56 ae 76 9b 56 79 ..U.R...‘ˆV.v.Vy
01d0 30 ad be 32 c6 d7 df 7d 0c 14 cb 86 9e d5 02 54 0..2...}.......T
01e0 ca d6 d8 ac 98 6f d6 0b 07 9f 14 d3 45 e1 68 2d .....o......E.h-
01f0 98 4b da 6e 35 2d 9f 4e 79 54 fb 62 d9 b0 75 e2 .K.n5-.NyT.b..u.
0200 fc ac 8d 01 2d e3 36 a4 12 c2 ba 53 ef 1f 18 59 ....-.6....S...Y
0210 60 00 35 a9 b0 86 fc 6c 60 2b 22 b8 c4 71 49 32 ‘.5....l‘+"..qI2
0220 6c f3 8b cd 14 ac 25 80 fd 89 bd fc 8f fd 88 16 l.....%.........
0230 8a 1a ae ff e0 90 3a a4 06 0d fd 1f 8e 3a 89 b7 ......:......:..
0240 f7 9f e7 70 ba 91 c0 f0 f6 d9 a6 85 c1 70 0a 02 ...p.........p..
0250 89 b0 94 ca b4 37 32 f2 b9 f2 b6 db ca 47 6f 37 .....72......Go7
0260 75 45 9e 9b b2 b4 e6 3f d6 d1 4d e5 3e b6 87 d9 uE.....?..M.>...
0270 b2 9c bb 79 83 2f 96 c5 74 57 7c 70 2b 8b 72 b7 ...y./..tW|p+.r.
0280 af ca 59 7d c1 0f fb f2 54 ec 53 77 1c d6 cb 72 ..Y}....T.Sw...r
0290 55 ee 91 b7 2e d0 eb 9f 13 16 ec 17 e1 4d 15 3f U............M.?
02a0 0a 65 6e 64 73 74 72 65 61 6d 0a 65 6e 64 6f 62 .endstream.endob
02b0 6a 0a 33 20 30 20 6f 62 6a 20 3c 3c 0a 2f 54 79 j.3 0 obj <<./Ty
02c0 70 65 20 2f 50 61 67 65 0a 2f 43 6f 6e 74 65 6e pe /Page./Conten
02d0 74 73 20 34 20 30 20 52 0a 2f 52 65 73 6f 75 72 ts 4 0 R./Resour
02e0 63 65 73 20 32 20 30 20 52 0a 2f 4d 65 64 69 61 ces 2 0 R./Media
02f0 42 6f 78 20 5b 30 20 30 20 36 31 32 20 37 39 32 Box [0 0 612 792
0300 5d 0a 2f 50 61 72 65 6e 74 20 37 20 30 20 52 0a ]./Parent 7 0 R.
0310 3e 3e 20 65 6e 64 6f 62 6a 0a 31 20 30 20 6f 62 >> endobj.1 0 ob
0320 6a 20 3c 3c 0a 2f 54 79 70 65 20 2f 58 4f 62 6a j <<./Type /XObj
0330 65 63 74 0a 2f 53 75 62 74 79 70 65 20 2f 46 6f ect./Subtype /Fo
0340 72 6d 0a 2f 46 6f 72 6d 54 79 70 65 20 31 0a 2f rm./FormType 1./
0350 50 54 45 58 2e 46 69 6c 65 4e 61 6d 65 20 28 2e PTEX.FileName (.
0360 2f 6e 70 73 5f 6c 6f 67 6f 5f 33 63 6c 72 5f 63 /nps_logo_3clr_c
0370 79 6d 6b 2e 70 64 66 29 0a 2f 50 54 45 58 2e 50 ymk.pdf)./PTEX.P
0380 61 67 65 4e 75 6d 62 65 72 20 31 0a 2f 50 54 45 ageNumber 1./PTE
0390 58 2e 49 6e 66 6f 44 69 63 74 20 38 20 30 20 52 X.InfoDict 8 0 R
03a0 0a 2f 42 42 6f 78 20 5b 30 20 30 20 32 32 32 20 ./BBox [0 0 222
03b0 31 35 33 5d 0a 2f 52 65 73 6f 75 72 63 65 73 20 153]./Resources
03c0 3c 3c 0a 2f 50 72 6f 63 53 65 74 20 5b 20 2f 50 <<./ProcSet [ /P
03d0 44 46 20 5d 0a 2f 45 78 74 47 53 74 61 74 65 20 DF ]./ExtGState
03e0 3c 3c 0a 2f 47 73 33 20 39 20 30 20 52 0a 2f 47 <<./Gs3 9 0 R./G
03f0 73 31 20 31 30 20 30 20 52 0a 2f 47 73 32 20 31 s1 10 0 R./Gs2 1

Figure 1.2: A hex view of the first 1024 bytes of a previous version of this thesis
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CHAPTER 2:
Prior Work

2.1 Techniques for Filetype Identification
2.1.1 Byte Frequency and N-Gram Analysis
McDaniel introduced the field of statistical filetype identification with his master’s thesis, which
used byte frequency to classify filetype [1].

In his work, McDaniel proposed an algorithm with three options to generate “file fingerprints.”
The first option generates byte distributions from all the bytes contained within a file. The
distributions are 256 element vectors that hold the counts of each byte value (corresponding to
the index in the array) in an entire file. These values are then normalized. Option two utilizes a
2D array (size 256× 256) to detect co-occurrences of byte pairs in a file. This is useful for file
types such as HTML where “<” and “>” ASCII values will appear with higher frequencies
and in roughly equal proportions and will be more frequent than an ASCII string of “< <”.
This option further helps to differentiate characteristic file types. The third option uses a file’s
header and tail to generate two arrays (one each for the header and the footer) for byte frequency
correlation for filetypes that do not have “strong” byte frequencies.

McDaniel’s algorithm generates file fingerprints for known file types by generating a running
frequency distribution over all files used as input. This distribution is the so-called file finger-

print for a particular type of file. These fingerprints can the be used to compare an unknown
file’s byte frequency distribution (BFD) to the fingerprint. The algorithm creates scores, rang-
ing from 0 to 1, for each file as it is compared to the fingerprint. A score is the average of the
differences between each byte value from the fingerprint and the unknown file. These scores
are then used to classify an unknown file by taking the highest score relating to a fingerprint.

McDaniel’s content based file detection suffered low accuracy ratings for options one and two
(28% and 46%, respectively). However, option three generated 96% accuracy. McDaniel only
applied his method to entire files, although the algorithm could be applied to file fragment
classification using options one and two. The third option will not be effective against file
fragments since a fragment will rarely contain either the header and tail of a file, and never
both.
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Li et al. introduced a method called fileprinting similar to McDaniel’s for file type identification
of files using byte distributions [2]. However, they proposed using centroid models instead of
distance scoring and their normalizing strategy was to normalize byte frequencies by the file
length. Their approach also was designed to deal with truncated network traffic. The authors
ran their experiments on the first n-bytes of a file (n being 20, 200, 500, and 1000 bytes) as well
as the entire file. Li et al. experienced very good accuracy rates for their truncated data exper-
iments. Interestingly, their accuracy results for using the entire file contents were significantly
lower than only using the first 20 bytes, indicating their algorithm was really just recognizing
file headers and was actually confused by file contents. Unfortunately, Li et al. did not test their
method against file fragments taken from the middle of files.

The Oscar method [3], developed by Karresand, utilizes a centroid byte frequency analysis
similar to Li’s method that analyzes binary data within disk clusters and RAM pages. Karresand
further extended his Oscar method with a new metric called “rate of change” (RoC) which he
described as the absolute value of the difference between two consecutive byte values in a data
fragment. Mainly implemented to identify JPEG data, the Oscar method was validated on a
single concatenated file consisting of 57 different file types taken from a Windows XP SP 2
machine. Karresand describes three experiments that tested the detection rates of the Oscar
and RoC methods: JPEG data, Windows executable data, ZIP data. The results for the JPEG
accuracy was excellent, although not too surprising since a JPEG file has a distinct and regularly
appearing byte pattern of 0xFF 0x00 throughout its structure. The BFD method produced a
97.4% true positive rate with a false positive rate of 0.005%. The RoC method eliminated the
false positive rate and had a better true positive rate of 99.2%. For the Windows executable
detection, neither algorithms were able to produce better than a 12% detection rate. However,
the false positive rate never exceeded 1.9%. Lastly, the ZIP data detection had good detection
rates of 46%–84% but had false positive rates ranging from 11%–37%

2.1.2 Sliding Windows
Hall and Davis explored whether a sliding window could improve filetype identification [4].
This research utilized entropy and compressibility measurements for each sliding window. For
each filetype, the measurements were averaged and a standard deviation was calculated for each
corresponding data point to obtain a profile plot. The next step was to develop a mechanism
to associate a filetype to a file. The first mechanism was called a “point-by-point delta.” This
approach is a variance method that compares a sliding window calculation to a profile plot of
a filetype. At each point throughout a profile, the sliding window value is subtracted from the
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profile’s average value. The absolute value of this subtraction is then accumulated for all points
in the profile to form what they called a “goodness of fit.” The smaller this value was indicated
how closely the file related to a particular profile. Therefore, the best guess as to the file’s type
was the smallest “goodness” calculation for a particular filetype profile.

The second method of classification used was the Pearson’s Rank Order Correlation. This
method calculates how well two sets of data correlate. The higher the correlation, the better the
two sets of data are said to match. This method was applied with a sliding window by tracking
how well the values of points from both the file and the profile rose and fell together. Any small
or negative correlation values indicated that the file and the profile plot did not have similar
plots.

Hall and Davis utilized two sets of files for their experiment. The first set was a reliably labeled
test set that was obtained from the lead researcher’s personal computer. This set contained
approximately 73,000 files and represented 454 file types identified by the Unix file utility.
The second data set consisted of over 265,000 files with 109 different filetypes. This set was
obtained from ManTech; the experimenters later discovered that this set contained improperly
labeled files or files of a size not conducive to sliding windows. For example, the authors
reported that of the 100 ZIP files contained in set 2, only 83 were 9000 bytes or larger. This
relatively small size will not provide an accurate average profile of ZIP data. Therefore, the
authors claim that set 2 was an unreliable set for validating their approach.

Hall and Davis reported some good results for their sliding window approach on set 1. For
the entropy measurements, both methods of association worked well. For the point-by-point
delta mechanism, the results ranged from 0 to 100% accuracy with 20 out of 25 of the reported
classification results were equal to or greater than 80%. The correlation mechanism had ac-
curacy ranging from 12% to 100% with the majority of the accuracy ratings clustering around
50% to 75%. The compressibility measurements did not perform as well as the entropy mea-
surements. Significant amounts of both association methods had zero percent accuracy ratings.
However, some filetypes such as DOC or XLS files had better accuracy results over the entropy
measurements.

Another sliding window technique developed by Moody and Erbacher [5] utilizes a statistical
approach to file type identification. Their technique called, SÁDI (Statistical Analysis for Data
type Identification), involves averaging sliding window values across a file and then utilizing
applied statistical techniques to analyze and graph the structure of the files. Moody and Er-
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bacher explicitily did not use container files. Their work had the goal of being able to identify
unique and consistent patterns within a base file that can be used to differentiate it from other
base files. The pitfalls to this approach (as was noted in their evaluation) is the inability to
differentiate file structures of closely related data types. This lead the researchers to develop a
two-pass technique for analyzing files. During the first pass, the analysis code employs statisti-
cal techniques and attempts to identify data blocks of the unknown file to statistical structures of
known data types. The second pass then tries to identify unusual patterns within the computed
statistics. This two-pass technique applies to the research conducted within the scope of this
thesis because the two pass technique could possibly be used to identify variations within a data
type and allow for more fine grained identification.

2.1.3 Normalized Compression Distance
Axelsson developed a technique that analyzed the normalized compression distance (NCD) of
file fragments in order to classify them [6]. The compression distance is a measure of how
distant two data vectors are when compressed concatenated and individually. The better the
concatenated vectors compress compared to individually, the more similar the two data vectors
are. Normalization is necessary to account for differences in vector length. Axelsson’s NCD
approach also required a classification technique and for this: k-nearest-neighbor was utilized
with different values of k. The k-nearest feature vectors were selected by which ever class
(filetype) had the largest number of votes.

Unlike all previous researchers who used private data sets that could not be distributed due
to copyright and privacy concerns, Axelsson chose to utilize the freely available file corpus
of 1 million U.S. government documents assembled by Garfinkel et al. [7]. He chose this
corpus because his work can be reproducible by other researchers and the corpus contains many
different common filetypes that any forensic researcher would encounter in the field. Axelsson’s
experiment focused on 512-byte file fragments since this fragment size is the smallest block size
available on current magnetic media. The compression algorithm used in this experiment to
calculate the compression distance was the bzip2 algorithm because it can comfortably handle
the lengths of the file fragments (2 x 512) without much overhead. Axelsson ran his experiment
ten times, each using a randomly chosen subset of 3000 blocks from the corpus with values of
k for each trial being from 1 to 10. For each trial, ten files for each filetype were chosen at
random to generate the classification sets. One drawback to Axelsson’s experiment (noted by
Axelsson) is that the test data was not verified to be properly labeled. Instead, he relied on a
file’s extension to accurately represent the data contained within it.
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Axelsson stated his results were unremarkable given that the average hit rate for the k values
of 1 to 10 ranged from 36% down to 32% respectively. However, he also included average
accuracy ratings of each k-value for each type of file classified. File types of eps, java, csv, and
ttf all had accuracies of 63% to 68% averaged over the 10 k-values. Other filetypes such as jpg,

gif, pptx, pps, gz, and png all had very low accuracy ratings for all k-values ranging from 3%
to 12%. This is still better than a random classifier, which would have had accuracy ratings of
around 3.5% for each filetype.

Although the overall accuracy ratings were relatively low, Axelsson’s experiment also produced
some interesting patterns in the misclassifications. The classifier misclassified large amounts of
files as docx. For example, 495 out of 1375 pps files, 470 out of 1067 png files, and 381
out of 1141 jpg files were misclassified as docx files. DOCX files are actually ZIP files with
specific structured contents [8]. Axelsson did not include a full confusion matrix due to space
restrictions in the paper but he did report that most every file appeared to be a docx file to
the classifier. This result, although not surprising, shows that filetypes containing large zlib-
compressed regions tend to classify together using his technique. Also of interest in Axelsson’s
experiment was that a k-value of k=1 gave the best classification results over the other values,
indicating that the method worked best when it would find a single exemplar file that was close
to, in NCD space, the file being tested.

Thus, while the accuracy of the NCD approach implemented by Axelsson did not produce
fantastic results, it did produce some accurate results that were much better than random classi-
fications. Further, if his experiment was conducted using a properly labeled test set, perhaps the
classifications could have been significantly higher. Close analysis of Axelsson’s algorithm in-
dicate that it is actually identifying common n-grams and using them to classify the fragments.
His implementation utilized the bzip2 library to compress the file fragments. The bzip2 library
is based off the Lempel-Ziv-Markov chain algorithm that uses a dictionary compression scheme
to remove repeating data patterns within a set of data. The removed patterns are listed within
the dictionary with pointers to where the patterns were removed so that the data can be uncom-
pressed by placing the removed patterns back into the data. The information stored within the
dictionary are n-grams that were repeating features in the data stream that could be removed
to compress the data. Therefore, by using the compression distance between file fragments,
Axelsson was classifying fragments based on the amount of reoccurring n-grams that could be
removed from an unknown fragment and compared to the amount of n-g rams removed for a
whole exemplar file of a single filetype.
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2.1.4 Specialized Approaches
Roussev and Garfinkel [9] argue that header/footer analysis of whole files and statistical analysis
and machine learning applied to file fragments are generally unsuccessful because they fail to
take into account the inherent internal structures of filetypes. They state that researchers will
often pursue a generalized approach to a problem and tend to shy away from “reinventing the
wheel.” These generalized approaches (statistical analysis and classical machine learning) are
usually borrowed from other fields where they have had good results but end up having limited
or no success across the entire field of filetype identification.

Many popular filetypes (PDF, JPEG, GZ) in use today have definitive structures within. A spe-
cialized approach will take into account these characteristic structures and make a classification
based on the presence of these structures in a file or file fragment. Roussev and Garfinkel out-
line four primary goals that researchers should strive to achieve when developing specialized
approaches. The first goal is accuracy and it is critical when dealing with terabyte-scale targets.
High classification rates (99% and greater) are necessary for a specialized approach to be effec-
tive with a large scale. The second goal is reliable error rate estimates. Every classifier should
have error rates that have been established by using publicly available data sets. The third goal
is clear results. A classifier should strive to have no false positives and false negatives but in
general false positives are worse. It is better for a classifier to report that it is unable to classify
rather than “guess” at a classification. Lastly, the fourth goal is line-speed performance. This
goal states that a classifier should be able to keep up with a bulk I/O transfer from a secondary
storage device.

Roussev and Garfinkel conclude that specialized approaches for specific data formats can be su-
perior to generalized filetype identification as long as a researcher is willing to study file format
specifications, view the binary structure of files by hand, and create hand-crafted recognizers.
Of course, this approach is also labor intensive

2.1.5 Validation of Internal Structures
Garfinkel et al. [10] proposed validating the internal structures of multimedia files as a way
to perform filetype identification. They argued that internal structures may be present within a
given filetype that can be used to characterize the filetype and be used to differentiate it from
other filetypes. Rather than developing a general approach to filetype identification, like byte
frequency, Garfinkel et al. state that purpose built functions can be developed to recognize
specific internal structures of a filetype.
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Container files can consist of many different types, a single fragment from a container file can
actually contain multiple types. Therefore, the authors adopted the term filetype discrimination

rather than using filetype identification. This term recognizes that a file fragment taken from
the middle of a JPEG file will not have any apparent difference with a fragment taken from the
middle of a JPEG file embedded in a PDF file. In this case, without looking at the neighboring
fragments (if they are available), this fragment will not be able to be identified as coming from a
PDF file. Therefore, while it may not be possible to properly identify the type of file a fragment
came from, it is possible to at least classify the type of file the fragment relates to.

Many multimedia files contain repeating frames that have a variable or fixed length offset and
may be able to be recognized by specific byte patterns. For example, the JPEG file format uses
the hexadecimal string 0xFF 0x00 to indicate the beginning of segments. Each of these seg-
ments contain Huffman-coded data that make up the image stored within the file. Garfinkel et

al. [10] highlighted a JPEG discriminator they built that looked for blocks of data that contained
high entropy data and contained more bigrams of 0xFF 0x00 that would regularly occur in
high entropy data. The discriminator would accept a block as a JPEG block if it had a high
entropy (HE) measurement of more than n distinct unigrams and had at least a predetermined
number of 0xFF 0x00 bigrams (LN; Least N-gram count). In order to tune the discriminator,
various values of HE and LN had to be tested to determine which combination gave the best
results. This was done with a grid search utilizing a set of 30 million 4KiB file fragments from
the govdocs1 corpus [7] for each iteration of the tuning. The best measure of HE turned out to
be 220 with three values of LN clustering around the highest accuracy ratings: LN = 1 produced
98.91% accuracy, LN = 2 produced 99.28% accuracy, and LN = 3 produced 99.08% accuracy.

Garfinkel et al. also discuss two other discriminators: MP3 discriminator with a 99.56% ac-
curacy and a Huffman-coded data discriminator with a 49.5% accuracy for 4KiB blocks and
66.6% accuracy for 16KiB blocks. Although the Huffman-coded discriminator’s accuracy is
not as impressive as the JPEG or MP3 discriminator, Garfinkel et al. report that the discrimi-
nator rarely mistook encrypted data for compressed data. This is significant since compressed
data and encrypted data will have relatively close entropy and the other algorithms discussed in
this chapter had difficulty distinguishing the two types.
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2.2 Existing Filetype Identification Implementations

2.2.1 The Unix file Command
The Unix file command is probably the most widely used filetype identification system today.
The file command analyzes file headers and footers to identify filetypes. This utility has been
present in every Unix release since the November 1973 Research Version 4. When System V
was released in 1983, the file utility included a list of so-called magic numbers that it utilized
to classify files. Magic numbers are invariant bytes of data located at small offsets from the
beginning of a file that are specific to a particular filetype. These magic numbers can then be
searched for and cross referenced by the external list of magic numbers to determine what the
file is.

When executed, the file command performs three sets of tests in order to classify the file given
as an argument. The first test performed is a filesystem test. This test performs a Unix stat

call in order to determine if the file is empty or some type of a special file such as a symbolic
link or system device (i.e., /dev/tty). The second test examines the entries in the external magic
number listing to see of the file has any data within a small fixed offset of the beginning of
the file that corresponds to an entry in the external listing and if so reports the description of
the filetype listed in the external listing. If the first two tests fail to identify the file, the third
test of determining if the file is a textual file is performed. Recent versions of the file utility
analyze the content of the file and determine if the ranges and sequences of bytes correspond
to various character sets. These character sets include sets such as ASCII, ISO-8859-x, UTF-8,
and UTF-16. If the utility can determine the character set, it will then attempt to determine
if the file is a programming language file. The program looks for certain keywords that are
unique to a specific programming language. For example, the keyword struct is specific to the
C programming language. If any keywords can be found, the utility will then output the name
of the programming language. The third test is reportedly less reliable than the first two and is
therefore performed last. If all three tests fail to determine the type of the file, the string “data”
is output.

The file utility is essentially using a modified long n-gram approach to determine the type of
a file. A header/footer of a file can contain specific character n-grams that the utility matches
to its library. Here the n-gram approach is modified in that certain n-grams are only accepted
if they occur at specific locations within the file. If the file is not a special file and fails the
magic number test, the utility is again using n-grams to test for textual content. If content of
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a file is textual, it again uses long n-grams to determine if the textual data corresponds to the
programming languages that it has in its library.

The file utility is a quick and straightforward tool to use to determine a file’s type. However,
there are downfalls to it. First, the file utility can be spoofed by opening up a file within a hex
editor and changing the magic numbers to misrepresent the file. And second, it does not work
on file fragments, with the exception that the fragment contains a descriptive header/footer data
or is a fragment from source code.

2.2.2 TrID
TrID [11] is a closed-source but freely available utility that identifies files based on their binary
signatures. The program uses a database of definitions that describe the recurring patterns (bi-
nary signatures) of all the filetypes in the database and matches a file to the correct filetype. The
developer for TrID states on the project’s website that the publicly available database currently
contains 4038 (as of November 2010) filetype definitions and is always expanding to include
new filetypes. TrID users also have the option to define a local database that can be used to store
filetype definitions that pertain to filetypes that are unique to a group of people. TrID gives the
user the option to append file extensions to files it identifies or show extended information about
the file (i.e.,: display ID3 information about an MP3 file).

2.2.3 Oracle Outside in Content Access
Outside In Technology [12] is a suite of software development kits produced by Orace and can
be used for document extraction, conversion, and viewing of 500 file formats. The API that
handles filetype identification for Outside In is called File ID. Its method of operation is not
documented. The Outside In SDK is available for both Windows and Unix platforms.

2.2.4 DROID – Digital Record Object IDentification
Developed by the UK National Archives [13], DROID (Digital Record Object Identification)
recognizes over 200 file formats. It was designed to scan repositories of millions of files and
identify them based on signature information. DROID was developed for digital preservation
and produces reports that are geared at informing users what content they have within their
repositories. DROID also will look inside archive files (ZIP, GZ, etc.) and analyze the content
contained within those files. This utility is platform independent and written in Java.
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2.2.5 GDFR – Global Digital Format Registry
The GDFR [14] is a collaborative effort between Harvard University, the US National Archives,
and the Online Computer Library Center (OCLC). GDFR is also designed for digital preserva-
tion to provide sustainable services that store, discover, and deliver information about digital
formats.

2.3 Other Related Work
2.3.1 File Mapping
Conti et al. [15] recently published an technique that takes a large binary data object such as
a memory dump of a running system and uses primitive file types to perform classification of
all the potential file types within the data object. The work demonstrates a radically different
approach to file fragment identification because it seeks to classify primitive data types within
files or a data object (equating to regions within the file/object) rather than trying to classify an
entire file or fragment.

For their experiment the authors created statistical signatures of filetypes using 14,000 file frag-
ments from primitive files such as compressed, encrypted, machine code, text, and bitmap files.
The authors then compared these signatures to a test set of file fragments using k-nearest neigh-
bor with Euclidean distance as the distance measurement. Their initial accuracy results for
certain types were not too impressive. For example, they found their accuracy with encrypted
data (AES256/text) was only 38.6% or compressed data such as JPEG was only 44.1% accurate.
However, if they grouped the primitive filetypes by similarity (e.g., all random, encrypted, and
compressed data), then the accuracy dramatically improved to 98.55%. It was from these ob-
servations that lead them to classify regions within a file/object into categories with the results
of each distinct region being optionally passed back to the user.

Also of note is the author’s byteplot utility that graphically displays an object’s structure. Each
byte value within an object is sequentially plotted on a vertically oriented display. Each pixel
value reflects the byte value with 0 being black and 255 being white. This tool graphically
allows manual inspection of a plot of a data object where an analyst can click on the regions
within the data object to more closely examine, allowing for manual filetype identification.
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2.3.2 Summarized Patterns
Summarized pattern features[16] were introduced by Collins [17] in 2002 to assist in named
entity recognition. Pattern features are used to map words into a set of patterns over a character
class. For example, all uppercase characters could be mapped to the character “A,” all lowercase
characters to “a,” and all digits mapped to “5.” Further, these patterns can be condensed [16]
into smaller summarized patterns by mapping a continuous string of common characters to a
single character (i.e.,: “Room-238” mapped to “Aa-5”).

Summarized patterns can be applied to filetype identification due to the nature of repeating
structures within file formats such as designating file versions in a header/footer or indicat-
ing embedded objects within the data stream. Within filetype identification, n-grams that are
dissimilar may still be indicative of an “entity” that is a feature of the filetype. By applying
summarized patterns, dissimilar n-grams can be condensed into a single n-gram that represents
all n-grams within a file that refer to the same feature.
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CHAPTER 3:
Long N-Gram Innovation

It is the hypothesis of this thesis that long n-grams exist as structures within files and can be
used to distinctly identify the file’s type. Short n-grams of one or two bytes, although they may
be important to the structure of a filetype, are not excellent predictors of filetype because they
are more likely to appear in random data. However, with each byte added to an n-gram, the
likelihood that the n-gram will appear in random data decreases exponentially. Therefore, if
a filetype can be characterized by the presence of distinct long n-gram(s), then these n-grams
become features describing the filetype of a file or file fragment.

3.1 N-Grams in the Wild
In the following subsections, various filetypes are presented in a split-hex view in order to
discuss how filetypes may or may not contain long n-grams that can be used to characterize
them. Each split-hex view is abridged and only shows the necessary components of the file that
pertain to the discussion.

3.1.1 HTML Source Code
Figure 3.1 shows the contents of a sample HTML source code file. HTML source code is a
textual file containing the code that is interpreted by a HTML browser when visiting a webpage.
Within this file are HTML tags. The beginning of the HTML file in Figure 3.1 states that
the HTML source code conforms to the W3C (World Wide Web Consortium) HTML 4.01
standard. In order for this HTML file to be compliant, the file must contain at the very least the
HTML element and the document element. Within the document element, the TITLE element
must be present. The beginning and ending of these elements are marked by tags of the form
<start element> and </close element>. The content in between these tags make up the content
of the element.

Inspection of Figure 3.1 shows that the HTML file contains the HTML, TITLE, BODY, and
other HTML 4.01 tags. On line 0060 is the tag marking the beginning of the HTML code
(<html>). Immediately following the beginning of the HTML code is the tag marking the
beginning of the document head, marked by the tag <head> on line 0070. The HTML title is
marked by the tag <title> on line 00c0. The beginning visible content that will be displayed
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0000 0a 3c 21 44 4f 43 54 59 50 45 20 48 54 4d 4c 20 .<!DOCTYPE HTML
0010 50 55 42 4c 49 43 20 22 2d 2f 2f 57 33 43 2f 2f PUBLIC "-//W3C//
0020 44 54 44 20 48 54 4d 4c 20 34 2e 30 31 20 54 72 DTD HTML 4.01 Tr
0030 61 6e 73 69 74 69 6f 6e 61 6c 2f 2f 45 4e 22 0a ansitional//EN".
0040 22 68 74 74 70 3a 2f 2f 77 77 77 2e 77 33 2e 6f "http://www.w3.o
0050 72 67 2f 54 52 2f 68 74 6d 6c 34 2f 6c 6f 6f 73 rg/TR/html4/loos
0060 65 2e 64 74 64 22 3e 0a 0a 3c 68 74 6d 6c 20 6c e.dtd">..<html l
0070 61 6e 67 3d 22 65 6e 22 3e 0a 3c 68 65 61 64 3e ang="en">.<head>
.
.
.
00c0 2d 38 22 3e 0a 3c 74 69 74 6c 65 3e 20 57 68 65 -8">.<title> Whe
.
.
.
0110 61 6e 64 20 31 39 39 34 2e 3c 2f 74 69 74 6c 65 and 1994.</title
0120 3e 0a 0a 3c 6c 69 6e 6b 20 72 65 6c 3d 22 73 74 >..<link rel="st
.
.
.
01c0 3e 0a 0a 0a 3c 73 63 72 69 70 74 20 74 79 70 65 >...<script type
01d0 3d 22 74 65 78 74 2f 6a 61 76 61 73 63 72 69 70 ="text/javascrip
01e0 74 22 20 73 72 63 3d 22 2f 70 61 67 65 54 65 6d t" src="/pageTem
01f0 70 6c 61 74 65 73 2f 67 65 6e 65 72 61 6c 2f 67 plates/general/g
0200 77 2e 6a 73 22 3e 0a 3c 2f 73 63 72 69 70 74 3e w.js">.</script>
.
.
.
0340 74 69 6f 6e 3a 20 6e 6f 6e 65 3b 0a 7d 0a 3c 2f tion: none;.}.</
0350 73 74 79 6c 65 3e 0a 3c 2f 68 65 61 64 3e 0a 0a style>.</head>..
0360 3c 62 6f 64 79 20 6f 6e 6c 6f 61 64 3d 22 64 6f <body onload="do
0370 63 75 6d 65 6e 74 2e 47 4d 42 61 73 69 63 53 65 cument.GMBasicSe
0380 61 72 63 68 2e 55 73 65 72 53 65 61 72 63 68 54 arch.UserSearchT
0390 65 78 74 2e 66 6f 63 75 73 28 29 22 3e 0a 0a 0a ext.focus()">...
.
.
.
2cb0 0a 0a 3c 2f 66 6f 72 6d 3e 0a 3c 2f 62 6f 64 79 ..</form>.</body
2cc0 3e 3c 2f 68 74 6d 6c 3e 0a 0a ></html>..

Figure 3.1: Contents of a sample HTML source code

on the webpage is marked with the <body> tag on line 0360. All tags associated with the
end of the HTML code (</html>), the end of the TITLE (</title>), and the end of the
document (</body>) are also present on lines 2cc0, 0110, and 2cb0 respectively.

The presence of all of these tags are indicative of an HTML source code file. These tags are
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0000 ff d8 ff e0 00 10 4a 46 49 46 00 01 01 01 00 48 ......JFIF.....H
0010 00 48 00 00 ff e2 0c 58 49 43 43 5f 50 52 4f 46 .H.....XICC_PROF
.
.
.
1340 1d 2f c0 47 e4 af ad 86 a6 ff 00 da 8a cd 1d 93 ./.G............
1350 82 fd de 6d 9f 47 b1 71 fa 09 94 4f 62 62 63 f4 ...m.G.q...Obbc.
1360 13 47 a5 fe 47 c3 db b5 81 a5 ee 45 7f 21 6c f9 .G..G......E.!l.
.
.
.
1410 c6 29 ff 00 12 35 34 b6 47 1e 2e 9a 7a d5 bc f0 .)...54.G...z...
.
.
.
1460 ab ff 00 02 32 ab a7 87 3b 98 ee 53 8a be 68 df ....2...;..S..h.
.
.
.
1540 df 15 6e 46 1c aa a9 56 59 94 a9 f3 71 45 91 9e ..nF...VY...qE..
1550 66 ef 2b cd bb 27 ff 00 c8 da aa ea b2 37 74 7d f.+..’.......7t}
1560 5a b0 5e e1 2a 50 fb 45 f7 98 75 f3 53 9d a7 04 Z.ˆ.*P.E..u.S...
.
.
.
15c0 1a df 94 27 7f 45 5f 97 71 28 ed 19 47 84 51 3b ...’.E_.q(..G.Q;
15d0 2c ac b5 6c c6 59 ff 00 f9 18 50 da 8d 7a 54 62 ,..l.Y....P..zTb
.
.
.
2360 50 d3 ff 00 40 06 64 bf 5e 2d c5 a7 d3 6c 7a 43 P...@.d.ˆ-...lzC
2370 ce af 4d 72 e5 f9 6b 4e 5e 4b 47 e0 3a ce d5 da ..Mr..kNˆKG.:...
2380 b8 dd b7 b4 aa ed 1d a3 5b 7d 8a ad 97 3d 4c 91 ........[}...=L.
2390 8d ec 94 56 91 49 70 48 03 26 f6 9e 53 2d ae 9d ...V.IpH.&..S-..
23a0 2b 3c 6b 1c 1f ff d9 +<k....

Figure 3.2: Contents of a sample JPEG image

long n-grams and can be used as classification features of an HTML file.

3.1.2 JPEG
Figure 3.2 shows the contents of a sample JPEG file. A valid JPEG file will conform to the
JFIF file specification and contains 2-byte markers within the file to annotate certain parame-
ters of the image data [18]. For example, the first two bytes on line 0000 contain the marker
0xFF 0xD8 which is the marker marking the start of the image (SOI). Following those two
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bytes is another 2-byte marker 0xFF 0xE0 marking the beginning of the first JPEG Applica-
tion Segment (APP0) in the file which contains the JFIF metadata. While different JPEG images
may very well have different metadata, there will always be a distinct long n-gram within the
APP0 segment: the null terminated string “JFIF” shown on line four that is a 5-gram [19]. The
SOI marker and the APP0 segment are what the Unix file command utilize to identify a JPEG
file. A JPEG file also has an end of image (EOI) marker (0xFF 0xD9 ) located in the last byte
of the image (line 23a0).

The data that makes up the image in a JPEG file is Huffman coded, making the data high entropy
data. Within this high entropy data, it is likely that the byte value 0xFF will occur. However,
according to the JPEG specification, the byte value 0xFF will be interpreted as the firt byte of
a JPEG marker by any JPEG capable decoder. In order to prevent framing errors of the image,
every byte value of 0xFF occurring in a Huffman-coded segment is always followed by the
byte value 0x00 [18]. When a JPEG encoder encounters the 0xFF byte value while inside a
Huffman-coded segment, the following 0x00 byte value is ignored. This process is termed
byte stuffing in the JPEG specification. Examples of this can be seen in Figure 3.2 on lines
1340, 1410, 1460, 1550.

Although the segment markers are bigrams and could possibly appear in random data, they
appear significantly more often in JPEGs than chance would predict [9], allowing a JPEG frag-
ment to be readily distinguished from random or otherwise compressed data. The JPEG header
is sufficiently long enough to help discriminate JPEG data from random data. In this case, the
presence of short n-grams such as 0xFF 0x00 that are descriptive of a filetype are augmented
by the presence of a distinctive long n-gram for the filetype. In this manner, whole JPEG files
can easily be identified. However, if a JPEG fragment is encountered that does not include
the file header, then long n-gram analysis will only have the 0xFF 0x00 byte stuffing bigram
structures to differentiate it from other filetypes.

3.1.3 BMP Image
Figure 3.3 shows the contents of a BMP file. The header information for a BMP file is 14 bytes
long. The first two bytes denote the magic number used to identify the type of the BMP file.
In figure four, the ASCII characters “BM” can be seen in the first two bytes of the file. These
two bytes signify that the BMP file is a Windows BMP file. The next four bytes on the BMP
header equal the size of the file (little-endian format) in bytes. In the case of the file showed
in Figure 3.3, the file size is 0xAEEC0000-bytes (little-endian) or 60,590-bytes. The next four
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0000 42 4d ae ec 00 00 00 00 00 00 36 00 00 00 28 00 BM........6...(.
0010 00 00 7d 00 00 00 a1 00 00 00 01 00 18 00 00 00 ..}.............
0020 00 00 78 ec 00 00 13 0b 00 00 13 0b 00 00 00 00 ..x.............
0030 00 00 00 00 00 00 76 55 2b 92 69 35 91 69 38 92 ......vU+.i5.i8.
0040 6a 39 92 6a 35 92 6a 35 92 6a 35 92 69 35 92 69 j9.j5.j5.j5.i5.i
0050 35 91 68 36 91 68 38 91 68 38 90 69 37 90 68 37 5.h6.h8.h8.i7.h7
0060 90 68 37 90 68 39 8f 67 3a 8d 66 39 8c 66 39 8c .h7.h9.g:.f9.f9.
0070 66 39 8b 65 38 8b 65 3b 8b 65 3b 89 64 39 87 63 f9.e8.e;.e;.d9.c
0080 39 87 62 3b 85 61 39 85 61 39 85 61 3a 84 60 3c 9.b;.a9.a9.a:.‘<
0090 82 5f 3b 81 5f 3a 81 5f 3b 80 5f 3b 7e 5d 3b 7d ._;._:._;._;˜];}
.
.
.
ec90 49 2c 64 49 2c 65 4a 2d 65 4a 2d 65 4a 2d 65 4a I,dI,eJ-eJ-eJ-eJ
eca0 2d 65 4a 2d 66 4a 2d 66 4a 2c 52 3d 22 75 -eJ-fJ-fJ,R="u

Figure 3.3: Contents of a sample BMP file

bytes after the BMP file size are reserved for application usage. The file used to generate Figure
3.3 did not have any application data located in this offset and therefore contain zero values.
Lastly, the last four bytes of the BMP header give the offset of the beginning of the pixel array
within the file itself. This array is the contents of the image itself, with each entry in the array
representing individual values of pixels within the image. Since the BMP file shown in figure
four is identified as a Windows type of BMP file, each pixel in the image is represented by three
bytes: one byte each for a red value, a green value, and a blue value. The pixel array is the last
element in a BMP file, no file footer is present for a BMP file.

The BMP file format presents a very difficult problem for long n-gram filetype identification.
There are no long n-grams associated with the structure of a BMP file that can be relied upon
to accurately describe the characteristics of all BMP files. Although all BMP files have a 14-
byte long header, only the first two characters in the header are indicative of all BMP files; the
remaining bytes are used to encode other information about the file, such as its size and pixel
depth. Because different BMP files are sure to have different sizes, characterizing BMP files
on specific sizes may not be useful. Therefore, the long n-gram approach will not be effective
when applied to BMP files or other formats with similar structure. Indeed, the only way to
reliably identify a BMP file is to see if the file size coded in the header matches the length of
the file. There is no obvious way to identify a BMP fragment other than rendering the image
and seeing if it looks correct.
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3.1.4 PDF
Figure 3.4 shows the complete contents of a simple PDF file. A PDF file consist of four parts:
a header containing an ASCII string denoting the version of the PDF file (i.e., “%PDF-1.4”
on line 0000), a body containing one or more objects in use by the file, a cross reference table
of objects in the file, and a trailer. Each object in the body is labeled sequentially in the form:
“1 0 obj”, “2 0 obj”, etc.. The end of objects are marked with an “endobj” (see line
0120-0130). The cross reference table holds all the offsets of all the objects contained within
the file for quick lookups and is marked by “xref”. The cross reference table can be seen
starting on line 17b0 of Figure 3.4. The trailer contains the information regarding where the
document starts.
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0000 25 50 44 46 2d 31 2e 34 0a 25 d0 d4 c5 d8 0a 33 %PDF-1.4.%.....3
0010 20 30 20 6f 62 6a 20 3c 3c 0a 2f 4c 65 6e 67 74 0 obj <<./Lengt
0020 68 20 31 30 32 20 20 20 20 20 20 20 0a 2f 46 69 h 102 ./Fi
0030 6c 74 65 72 20 2f 46 6c 61 74 65 44 65 63 6f 64 lter /FlateDecod
0040 65 0a 3e 3e 0a 73 74 72 65 61 6d 0a 78 da 25 8b e.>>.stream.x.%.
.
0090 b9 7d cc 76 6c fb 5f ce 25 f1 b9 61 b6 e8 00 14 .}.vl._.%..a....
00a0 18 d9 11 e4 21 0a 26 f9 67 fa 92 e9 d4 bc 2e d4 ....!.&.g.......
00b0 18 91 0a 65 6e 64 73 74 72 65 61 6d 0a 65 6e 64 ...endstream.end
00c0 6f 62 6a 0a 32 20 30 20 6f 62 6a 20 3c 3c 0a 2f obj.2 0 obj <<./
00d0 54 79 70 65 20 2f 50 61 67 65 0a 2f 43 6f 6e 74 Type /Page./Cont
.
0110 37 36 20 38 34 31 2e 38 39 5d 0a 2f 50 61 72 65 76 841.89]./Pare
0120 6e 74 20 35 20 30 20 52 0a 3e 3e 20 65 6e 64 6f nt 5 0 R.>> endo
0130 62 6a 0a 31 20 30 20 6f 62 6a 20 3c 3c 0a 2f 46 bj.1 0 obj <<./F
0140 6f 6e 74 20 3c 3c 20 2f 46 38 20 34 20 30 20 52 ont << /F8 4 0 R
.
0360 20 35 30 30 20 35 35 35 2e 36 20 32 37 37 2e 38 500 555.6 277.8
0370 20 33 30 35 2e 36 20 35 32 37 2e 38 20 32 37 37 305.6 527.8 277
0380 2e 38 20 38 33 33 2e 33 20 35 35 35 2e 36 20 35 .8 833.3 555.6 5
0390 30 30 20 35 35 35 2e 36 20 35 32 37 2e 38 20 33 00 555.6 527.8 3
03a0 39 31 2e 37 20 33 39 34 2e 34 5d 0a 65 6e 64 6f 91.7 394.4].endo
.
0400 46 6c 61 74 65 44 65 63 6f 64 65 0a 3e 3e 0a 73 FlateDecode.>>.s
0410 74 72 65 61 6d 0a 78 da ad 92 79 38 94 ed db c7 tream.x...y8....
0420 6d 83 c8 ae 6c e1 46 48 96 31 b2 2f d9 f7 6c 63 m...l.FH.1./..lc
.
14a0 48 33 52 78 8f 39 e1 1d 4a f3 45 06 83 f9 ff 00 H3Rx.9..J.E.....
14b0 15 25 25 38 0a 65 6e 64 73 74 72 65 61 6d 0a 65 .%%8.endstream.e
14c0 6e 64 6f 62 6a 0a 38 20 30 20 6f 62 6a 20 3c 3c ndobj.8 0 obj <<
14d0 0a 2f 54 79 70 65 20 2f 46 6f 6e 74 44 65 73 63 ./Type /FontDesc
14e0 72 69 70 74 6f 72 0a 2f 46 6f 6e 74 4e 61 6d 65 riptor./FontName
14f0 20 2f 5a 47 52 54 50 4f 2b 43 4d 52 31 30 0a 2f /ZGRTPO+CMR10./
1500 46 6c 61 67 73 20 34 0a 2f 46 6f 6e 74 42 42 6f Flags 4./FontBBo
.
17a0 2e 35 2e 37 29 0a 3e 3e 20 65 6e 64 6f 62 6a 0a .5.7).>> endobj.
17b0 78 72 65 66 0a 30 20 31 31 0a 30 30 30 30 30 30 xref.0 11.000000
17c0 30 30 30 30 20 36 35 35 33 35 20 66 20 0a 30 30 0000 65535 f .00
17d0 30 30 30 30 30 33 30 37 20 30 30 30 30 30 20 6e 00000307 00000 n
.
1870 30 30 30 30 35 37 36 30 20 30 30 30 30 30 20 6e 00005760 00000 n
1880 20 0a 30 30 30 30 30 30 35 38 30 39 20 30 30 30 .0000005809 000
1890 30 30 20 6e 20 0a 74 72 61 69 6c 65 72 0a 3c 3c 00 n .trailer.<<
18a0 20 2f 53 69 7a 65 20 31 31 0a 2f 52 6f 6f 74 20 /Size 11./Root
18b0 39 20 30 20 52 0a 2f 49 6e 66 6f 20 31 30 20 30 9 0 R./Info 10 0
.
1910 3e 0a 73 74 61 72 74 78 72 65 66 0a 36 30 36 34 >.startxref.6064
1920 0a 25 25 45 4f 46 0a .%%EOF.

Figure 3.4: Contents of a sample PDF file
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The PDF body can contain many types of data like: numbers, arrays, string objects, dictionary,
and streams. A dictionary is an unordered list of key-value pairs (name-object) that are hash
tables. Example keys are “/Type” (line 00c0 and 00d0) and “/Font”. The stream object is
interesting because within a stream in a PDF, embedded data of any type can be stored. PDF
files typically embed JPEGs for example. However, they can also embed other files as well,
even other PDFs! If an object is a stream, it begins with a dictionary that describes the item
such as length or encoding. The actual data stream is marked with “stream” and ends with
“endstream” like on lines 0040 and 00b0 of figure five.

The cross reference table (beginning on line 0x17b0) contains one or more offsets of the objects
within the PDF file. Each object listing has three sections: a 10 digit ASCII offset from the
beginning of the file to the object’s location, a five digit ASCII generation number, and a single
ASCII character marking the object as free or in use (“f” or “n” respectively). In between each
string is an ASCII space. The very first object entry in the reference table (lines 17b0-17c0) is
the location of the first object marked as free in the document. This entry stores the free object’s
offset and will always contain the ASCII generation number of “65535” and will always have
the ASCII character “f” at the end. The remaining entries in the reference table will have values
associated with the location and status of the object and will vary from document ot document.
The final free object listed in the cross reference table will always have the 10 digit ASCII string
“0000000000” since there are no further free objects within the PDF file.

Lastly, there is the trailer section of a PDF. This section is marked by “trailer” (line 1890)
and among other various information contained within this part of the PDF file is the offset
from the beginning of the file where the cross-reference table begins. This offset is located
immediately before the end of file marker for the file which is “%%EOF”.

The PDF file format is a kind of container file. A container file is a file that has the capability
of embedding data of a different type within its structure. For example, many PDF files that
contain graphics contain embedded JPEG files. Another example is compressed objects within
a PDF file. In order to keep the size of a PDF file to a minimum, encapsulated objects within
a PDF file can be compressed. Figure 3.4 shows an example of an embedded object that has
been compressed. Starting on line 0000, an object is specified (object “3 0 obj”). Following
the new object specification, line 0030 contains the string “FlateDecode”. This informs
the application that may be handling the PDF file that the datastream following this string is
compressed and can be uncompressed using the zlib algorithm. This compressed datastream
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continues until the “endstream.endobj” is specified (line 00b0).

The PDF file format is an excellent example of a filetype that has distinct long n-grams within
the structure of the entire file, making the filetype easily identifiable. Further, since the PDF
format has a distinct structure marked by distinct long n-grams, file fragments originating from
PDF files have a better chance of being accurately identified, since the structuring data is dis-
tributed throughout the file format. However, if the file fragment originates from the middle of
an encapsulated object, then accurate identification can be significantly impacted by the data
type of the embedded object. For example, if the file fragment originates from a JPEG image
encapsulated within a PDF file, there is no way to determine if the file fragment is part of a PDF
file or a standalone JPEG image without other fragments from the file.

3.2 Algorithm for Finding Long N-Grams
A method to detect common n-grams amongst a set of files is straightforward: take each long
n-gram of each n-size from a file and search for that n-gram in all the other files in a set. If
the n-gram appears in all the files in the set, then it can be called a distinct n-gram for that
particular filetype and added to a set of identifying n-grams. Once all n-grams of each n-size
has been searched among the set of files, a generated list of n-grams of various sizes that were
present in all the files in the set can be created. This set of n-grams can then be used to check
if an unknown file has any of the distinct n-grams contained within it in order to be used in a
classification process. The classification process would have to decide if enough of the n-grams
listed for the filetype are contained within the unknown file in order to classify that file as being
of that filetype. Since long n-grams can be used as features, machine learning techniques can be
employed to classify files based on the presence of long n-grams. However, if long n-grams can
be determined to be distinct to a single filetype then there really is no need for any sophisticated
machine learning since the presence of distinct long n-gram is by itself a strong indicator of a
specific filetype.

Long n-grams will be found within a filetype as long as it is common to the filetype. For
example, within properly formed HTML files, one would expect to find < H T M L > and
< / H T M L > ASCII n-grams since those ASCII strings are part of the HTML language.
For JPEG files, the ASCII n-gram J F I F and the n-grams 0xFF 0x00 , 0xFF 0xD8 , and
0xFF 0xD9 should always be detected within JPEG files.

31



3.3 Summarized N-Grams
The principle of summarized patterns proposed by Collins to improve named entity extraction
[17] can be applied to long n-gram analysis by taking n-grams within a filetype that are repre-
senting common features of a filetype and associating them by a single n-gram. The benefit to
this is being able to represent repeating or similar structures within a filetype that may vary by
a few bytes but are still a single distinctive characteristic. These can be represented by a single
summarized n-gram.

3.3.1 Presummarization of N-Grams
Table 3.1 lists common n-grams to nine different filetypes. The common n-grams were found

Type Total
Found

Example N-gram (HEX) ASCII Equivalent N-gram
size

Predictive
(yes/no)

ppt 1942 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .................... 20 no
ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff .................... 20 no
53 00 75 00 6d 00 6d 00 61 00 72 00 79 00 49 00 6e 00 66 00 S.u.m.m.a.r.y.I.n.f. 20 yes
20 50 6f 77 65 72 50 6f 69 6e 74 .PowerPoint 11 no
ff 00 ff ... 3 no

doc 108 20 44 6f 63 75 6d 65 6e 74 .Document 9 no
4d 69 63 72 6f Micro 5 no
61 74 69 6f 6e ation 5 no

pdf 189 2f 43 72 65 61 74 69 6f 6e 44 61 74 65 /CreationDate 13 yes
30 30 30 30 30 30 30 30 30 30 20 0000000000. 11 yes
31 30 20 30 20 6f 62 6a 10.0.obj 8 yes
31 31 20 30 20 6f 62 6a 11.0.obj 8 yes
25 50 44 46 2d 31 2e %PDF-1. 7 yes
20 31 30 .10 3 no
20 20 .. 2 no

gif 3 2c 00 00 00 00 ,.... 5 no
47 49 46 38 GIF8 4 yes
00 3b .; 2 no

jpg 30 ff d8 ff e0 00 10 4a 46 49 46 00 01 ......JFIF.. 12 yes
01 01 00 00 00 00 00 00 00 ......... 9 no
ff 00 .. 2 no

gz 44 1f 8b 08 ... 3 yes
00 99 .. 2 no
71 84 q. 2 no
d0 c0 .. 2 no
f9 6f .o 2 no

ps 125 25 25 45 6e 64 43 6f 6d 6d 65 6e 74 73 %%EndComments 13 yes
65 66 6f 6e 74 20 73 65 74 66 6f 6e 74 efont.setfont 13 yes
25 21 50 53 2d 41 64 6f 62 65 2d %!PS-Adobe- 11 yes
20 31 30 .10 3 no
20 20 .. 2 no

html 156 20 74 68 65 20 .the. 5 no
61 62 6c 65 20 able. 5 no
74 69 6f 6e 20 tion. 5 no
3e 3c 2f ></ 3 no
20 20 .. 2 no

Table 3.1: Sample common n-grams from learning sets of 20 files each. Non-printable ASCII
values in ASCII column are displayed as “.”

by using learning sets containing 20 files each of a single type. In order for an n-gram to be
considered “common”, it had to have appeared within every file of a learning set.
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Table 3.1 includes a column named “Predictive (yes/no)”. This column was manually created
for this thesis based on intuition as to whether each n-gram would be a useful predictor of a
filetype. The classification of an n-gram’s predictability is based on whether I felt that the n-
gram was likely to occur within random data or be likely to appear within other filetypes. It
should be noted that while the “predictive” column was generated manually, the rest of the table
was generated automatically. The final solution to the file identification problem presented later
does not require manual intervention.

The PPT filetype in Table 3.1 produced some very long common n-grams. However, the two
20-grams that are all 0x00 values and all 0xFF values are predictors of the PPT filetype be-
cause of their low entropy. Runs of single values are commonly seen in many filetypes. For
example, runs of byte values consisting of all 0’s or all 1’s frequently occur in bitmap image files
(an all black or an all white BMP file). Additionally, hard drives could also be initialized with
all 0’s or all 1’s on them that would produce fragments containing these values. The 20-gram
S . u . m . m . a . r . y . I . n . f listed for the PPT filetype is classified as a distinct pre-
dictor because the 20-gram is a Unicode string that is not a commonly occurring word. In fact,
the majority of the 20-grams found in the PPT learning set were a mixture of commonly occur-
ring Unicode strings (low predictability) and uncommon Unicode strings (high predictability)
or 20-grams filled with substrings of 0’s followed by 1’s or 1’s followed by 0’s. The the 11-gram
and the 3-gram in Table 3.1 are not good predictors for the PPT filetype since the 11-gram is a
string of ASCII characters that can occur in any filetype that contains ASCII text. The 3-gram
is closely related to the JPEG byte stuffing marker 0xFF 0x00 (although JPEGS will typically
not contain a 3-gram 0xFF 0x00 0xFF ). It is important to note that the PPT learning set gen-
erated 1942 common n-grams. Although the PPT learning set produced a large amount of low
predictability n-grams, they are still important in the overall description of a file because the
presence of a large number of the low predictability n-grams within a file/fragment could still
be indicative of the filetype.

The DOC filetype in Table 3.1 shows the best n-grams found within a DOC filetype learning set.
As shown, all three examples were low predictors of the filetype since all three are all ASCII
strings. The remaining 105 n-grams detected in the DOC learning set were all trigrams and
bigrams, making them not useful predictors.

The PDF filetype produced a number of long n-grams that are distinct to PDF files. Although
the structures within a PDF file are marked by ASCII strings, they are very distinctive ASCII
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strings. For instance, the 13-gram shown for the PDF filetype in Table 3.1 begins with a forward
slash followed by the ASCII string “CreationDate”. Although this string may not be very
distinct since it contains two dictionary words, concatenating the words together utilizing camel
case and the addition of the forward slash at the beginning make this n-gram indicative of PDF
files. It is important to note that this n-gram could also originate from a textual file describing
the structuring of a PDF file. However, as was discussed in the previous subsection on PDF files
and the example n-grams shown in Table 3.1, there are many distinct long n-grams that are part
of the PDF file specification that can help to make this ambiguity more clear.

The GIF learning sets produced exactly three n-grams, two of which were of low predictability.
The 4-gram originated from the headers of every file in the learning set. Although it is classified
as being of high predictability, a GIF file fragment from the middle of the file will not contain
this n-gram since it occurs in the header of the file.

The JPEG learning sets produced one distinct common 12-gram. However, like the GIF file-
type, it originates from the JPEG file header. The remaining n-grams for the JPEG filetype are
low predictors and are mainly trigrams and bigrams. The trigrams and bigrams contained addi-
tional JPEG markers such as: Start of Scan (SOS), Define Huffman Table (DHT), and Define
Quantization Table (DQT). Although JPEG markers that can be located within high entropy are
short n-grams, they can still be useful in identifying JPEG file fragments when the presence of
multiple bigrams corresponding to JPEG markers are detected within high entropy data.

The gzip (GZ) filetype produced one distinct n-gram, the trigram 0x1F 0x8B 0x08 , from the
header of each GZ file in the learning set. This is the header as specified in the GZIP standard
(RFC1952). The tri-gram is part of the GZ header specified in RFC1952 for the GZ file speci-
fication: 0x1f 0x8b (called ID1 and ID2 respectively) identify the file as a gzip file and the
0x08 is the CM field (compression method). This field specifies the compression method used
to compress the data. CM1-7 are reserved and CM8 denotes the deflate compression method.
Although this n-gram is relatively small, its byte values help to make it distinct. The trigram
0xFF 0x00 0xFF from the PPT filetype is not a distinct trigram because of its individual val-
ues of either all 1’s or all 0’s and are likely to occur in binary data or other filetypes. The trigram
for the GZ filetype, although as equally likely to occur in random data as the trigram discussed
for the PPT filetype, is still distinct enough to predict a GZ filetype header.

The post-script filetype (PS) shares the same characteristics of the PDF filetype n-grams. Both
share a diverse range of long n-grams that are distinct to their particular filetype. Interestingly,
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the trigrams and bigrams shown for both the PDF filetype and the PS filetype are common to
both filetypes, further demonstrating the low predictability rating of both n-grams.

The HTML n-grams warrant special analysis. One would always expect to see the HTML tags
<HTML> and </HTML> in every HTML file. However, the results for the HTML filetype in
Table 3.1 do not show the respective n-grams and in fact, they were not present once all 20
HTML learning files were scanned. The reason for this is that the HTML language is case
insensitive, meaning <html> and <HTML> have the same semantics. Upon inspection of the
20 HTML files in the learning sets, it was discovered some files contained all uppercase HTML
tags while others contained all lowercase tags, eliminating the possibility of finding common
n-grams indicative if filetype. Indeed, the most common n-grams are in fact indicative of the
language of the file’s content, English

3.3.2 Postsummarization of N-Grams
Table 3.2 was generated using the same learning sets used in Table 3.1 and has the same last
column containing a manual classification of the predictability of the n-gram. The summariza-
tion method used was to convert all ASCII uppercase to lowercase and all ASCII integers to the
ASCII number 5.

The PPT filetype experienced a significant growth in the number of common n-grams when
summarized n-grams were utilized. However, the use of summarized n-grams did not appear to
produce additional distinct n-grams that could be used to describe the PPT filetype. Of the 2590
n-grams found in the PPT learning set, 1590 of them are bigrams which do not appear to be
distinctive enough to characterize PPT bigrams from random data bigrams. Although there are
no distinguishing n-grams for the PPT filetype, the large number of non-distinguishing n-grams
combined can be utilized to identify the PPT filetype. The full file identification experiment
discussed in Chapter 4 highlights this fact.

The DOC filetype, like the PPT filetype, did not experience any improvement in the detection of
distinguishable n-grams. Before summarization, none of the DOC files in the learning set had a
four digit number in common since no 4-gram containing all ASCII integers was in the common
n-gram set. However, the 4-gram 5 5 5 5 is added to the set of common n-grams for the DOC
filetype once n-gram summarization is used. The occurrence of this 4-gram establishes that all
20 DOC files in the learning set had at least a four digit ASCII number within their contents.
While this summarized 4-gram is not a good predictor of the DOC filetype, it does illustrate
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Type Total
Found

Example N-gram (HEX) ASCII Equivalent Size Predictive
(yes/no)

ppt 2590 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .................... 20 no
ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff .................... 20 no
73 00 75 00 6d 00 6d 00 61 00 72 00 79 00 69 00 6e 00 66 00 s.u.m.m.a.r.y.i.n.f. 20 yes
0f 00 04 f0 28 00 00 00 01 00 09 f0 10 00 00 00 00 00 00 00 ....(............... 20 no
35 00 00 00 35 00 00 00 35 00 00 00 35 00 00 00 35 00 00 00 5...5...5...5...5... 20 no
ff ff ff ff ff ff ff 00 00 00 00 00 00 00 00 00 00 00 00 00 .................... 20 no
ff ff ff ff ff ff ff ff 00 00 00 00 00 00 00 00 00 00 00 00 .................... 20 no
ff ff ff ff ff ff ff ff ff 00 00 00 00 00 00 00 00 00 00 00 .................... 20 no
ff ff ff ff ff ff ff ff ff ff 00 00 00 00 00 00 00 00 00 00 .................... 20 no
6f 00 77 00 65 00 72 00 70 00 6f 00 69 00 6e 00 74 00 20 00 o.w.e.r.p.o.i.n.t... 20 no
6f cf 11 86 ea 00 aa 00 b9 29 e8 00 00 00 00 00 00 00 00 00 o........).......... 20 no
70 00 00 00 71 00 00 00 72 00 00 00 73 00 00 00 74 00 00 00 p...q...r...s...t... 20 no
70 00 6f 00 69 00 6e 00 74 00 20 00 64 00 6f 00 63 00 75 00 p.o.i.n.t...d.o.c.u. 20 no
70 00 6f 00 77 00 65 00 72 00 70 00 6f 00 69 00 6e 00 74 00 p.o.w.e.r.p.o.i.n.t. 20 no
20 70 6f 77 65 72 70 6f 69 6e 74 .powerpoint 11 no

doc 122 20 64 6f 63 75 6d 65 6e 74 .document 9 no
6e 6f 72 6d 61 6c normal 6 no
6d 69 63 72 6f micro 5 no
35 35 35 35 5555 4 no
77 6f 72 64 word 4 no

pdf 174 35 35 35 35 35 35 35 35 35 35 20 35 35 35 35 35 20 66 5555555555.55555.f 18 yes
35 35 35 35 35 35 35 35 35 35 20 35 35 35 35 35 20 6e 5555555555.55555.n 18 yes
2f 63 72 65 61 74 69 6f 6e 64 61 74 65 /creationdate 13 yes
35 20 35 20 35 35 35 20 35 35 35 5.5.555.555 11 yes
25 70 64 66 2d 35 2e 35 %pdf-5.5 8 yes
35 35 20 35 20 6f 62 6a 55.5.obj 8 yes

gif 7 67 69 66 35 35 61 gif55a 6 yes
2c 00 00 00 00 ,.... 5 no
00 3b .; 2 no
27 35 ’5 2 no
35 65 5e 2 no
35 68 5h 2 no
35 bc 5. 2 no

jpg 702 ff d8 ff e0 00 10 6a 66 69 66 00 01 ......jfif.. 12 yes
01 01 00 00 00 00 00 00 00 ......... 9 no
01 01 01 00 .... 4 no
35 35 35 555 3 no

gz 161 1f 8b 08 ... 3 no
00 35 .5 2 no

ps 121 25 21 70 73 2d 61 64 6f 62 65 2d 35 2e 35 %!ps-adobe-5.5 14 yes
25 25 65 6e 64 63 6f 6d 6d 65 6e 74 73 %%endcomments 13 yes

html 176 3c 2f 62 6f 64 79 3e </body> 7 yes
3c 2f 68 65 61 64 3e </head> 7 yes
3c 2f 68 74 6d 6c 3e </html> 7 yes
3c 62 6f 64 79 <body 5 yes
3c 68 74 6d 6c <html 5 yes

Table 3.2: Sample common n-grams from learning sets of 20 files each with summarized n-
grams. Non-printable ASCII values in ASCII column are displayed as “.”

how n-gram summarization can “extract” a common n-gram from a set of files.

The PDF filetype (along with the HTML filetype discussed below) best illustrates two benefits
of n-gram summarization: production of longer distinct n-grams and the summarization of a
filetype’s structuring. Table 3.2 lists a 13-gram as an example of a non-summarized PDF n-
gram. This 13-gram was the longest n-gram detected within the PDF learning set. However,
once n-gram summarization was used, additional distinctive n-grams of significantly longer
length were detected. The 18-grams listed for the PDF filetype in Table 3.2 originate from the
cross-reference table of the PDF files in the learning set. The reason why these 18-grams were
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not found in the non-summarized n-gram set is because all the PDF files in the learning set
had different cross reference tables with different numerical values of the offsets of the various
objects located within each file. By converting all ASCII integers to the character “5”, these
similar n-grams became common n-grams. The same is true for the 11-gram and the two 8-
grams.

The GIF filetype experienced a slight benefit from n-gram summarization. Without n-gram
summarization, the longest distinct n-gram was the 4-gram G I F 8 . With n-gram summariza-
tion, this 4-gram expanded into the 6-gram g i f 5 5 a , a summarized n-gram for G I F 8 7 A
and G I F 8 9 A To reiterate, the benefit comes from having a longer distinct n-gram that is
even less likely to occur in random data than the 4-gram. However, this does not alleviate the
difficulty of identifying GIF data fragments that do not contain the GIF header.

The JPEG filetype is interesting from the standpoint of the growth observed of the number of
n-grams detected going from non-summarized to summarized n-grams. Before summarization,
the total n-grams detected for JPEG files was 30 n-grams. After summarization, this number
grew to 702. JPEG data is compressed data which is high entropy data where individual bytes
values are independent from one another and the data will appear to be random when viewed
in its raw form. Without n-gram summarization, a set of high entropy files will have very
little n-grams in common. However, the way that n-gram summarization was applied in this
thesis reduced the range of byte values that a single byte could be. Since all ASCII integers
were converted to a single character and all uppercase ASCII characters were converted to
lowercase, 35 byte values1 were removed from the “vocabulary” of the individual byte values.
This reduction in the byte vocabulary caused a larger degree of commonality among the high
entropy data of the JPEG files. This is another case where relatively insignificant n-grams
can be combined together to help characterize a filetype. The summarized bigrams for the
JPEG filetype had 691 bigrams in common, having a wide range in values of 0x00 0x02 to
0xFF 0xC4 .

The GZ filetype experienced another significant growth of common n-grams like the JPEG
filetype since the GZ filetype is also high entropy data.

The PS filetype shared the same improvement characteristics as the PDF filetypes once n-gram
summarization was applied.

1ASCII integer values converted to a single value removes nine byte values and all English ASCII characters
limited to lowercase removes 26 byte values.

37



The HTML filetype shows another example of summarized n-grams improving the detection
of distinctive n-grams within a filetype. In Table 3.1, common HTML tags such as <HTML>
were obviously missing when they should have been present given the fact that all files in the
learning set were valid HTML files. However, as was discussed, the HTML language is case
insensitive. N-gram summarization solved this issue and, as Table 3.2 shows, HTML tags (and
the corresponding n-grams they produced) were found. It is important to note that the HTML
n-grams in Table 3.2 that correspond to HTML tags were the only HTML tags found in the
learning set. The HTML language has numerous other tags that are contained in valid HTML
code. However, these tags are not required for a basic and valid HTML document and therefore
will not be common to all HTML documents. The majority of the n-grams found within the
HTML learning set were trigrams and bigrams of printable ASCII characters (156 in total)
corresponding to common bigrams and trigrams in the English language. This is unfortunate as
the use of such n-grams for type identification is incorrect, since these n-grams correspond to
file content, not to filetype.

3.3.3 Long N-Gram Learning Sets
As with any statistical approach that uses sets of common objects to build a general model,
it is important to have learning sets of sufficient size and diversity that an algorithm can then
utilize to build a model that accurately reflects the distinct properties of whatever it is modeling.
However, establishing the proper size of this set for a specific application is research topic in
itself. If a set is too small, an algorithm may not be able to produce a model that can accurately
represent the general features associated to that object class. If the set is too big, it may generate
a model that is too specific and the model may only represent a subset of the object class and
not be useful as a general object classifier. This can happen by eliminating features that are
indicative to an object but do not necessarily appear in all objects. Therefore, when designing
learning sets, consideration needs to be given to how much generality needs to be given to the
distinct features that make up the model.

The general assumption about long n-grams in this thesis is the longer a distinct common n-
gram is, the better it will be at predicting a filetype (or a class of filetypes if it is distinct to
more than one.) Common short n-grams are important since they could be used to differentiate
between filetypes that may have long n-grams in common. However, relying solely on shorter
n-grams is not reasonable for feature identification because the space of short n-grams makes
them likely to occur across filetypes and in high entropy data.
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Table 3.3 shows the top 15 n-grams from 3 feature generations (n-size 2 to 20) from a set of

Set N-gram
Size Top 15 N-grams (HEX) ASCII Equivalent Size
20 20 30 30 30 30 30 20 6e 0d 0a 74 72 61 69 6c 65 72 0d .00000.n..trailer. 18

65 6e 64 73 74 72 65 61 6d 0d 65 6e 64 6f 62 6a 0d endstream.endobj. 19
2f 46 6f 6e 74 44 65 73 63 72 69 70 74 6f 72 20 /FontDescriptor. 16
2f 57 69 6e 41 6e 73 69 45 6e 63 6f 64 69 6e 67 /WinAnsiEncoding 16
2f 49 74 61 6c 69 63 41 6e 67 6c 65 20 30 /ItalicAngle.0 14
33 20 30 30 30 30 30 20 6e 0d 0a 30 30 30 3.00000.n..000 14
0d 65 6e 64 6f 62 6a 0d 78 72 65 66 0d .endobj.xref. 13
2f 43 72 65 61 74 69 6f 6e 44 61 74 65 /CreationDate 13
2f 46 6c 61 74 65 44 65 63 6f 64 65 /FlateDecode 12
2f 43 61 70 48 65 69 67 68 74 20 /CapHeight. 11
2f 46 69 72 73 74 43 68 61 72 20 /FirstChar. 11
30 30 30 30 30 30 30 30 30 30 20 0000000000. 11
31 20 30 30 30 30 30 20 6e 0d 0a 1.00000.n.. 11
2f 4c 61 73 74 43 68 61 72 20 /LastChar. 10
2f 4d 65 74 61 64 61 74 61 20 /Metadata. 10
2f 52 65 73 6f 75 72 63 65 73 /Resources 10

50 2f 46 6c 61 74 65 44 65 63 6f 64 65 /FlateDecode 12
30 30 30 30 30 30 30 30 30 30 20 0000000000. 11
2f 52 65 73 6f 75 72 63 65 73 /Resources 10
31 36 20 30 30 30 30 30 20 6e 16.00000.n 10
2f 43 6f 6e 74 65 6e 74 73 /Contents 9
2f 4d 65 64 69 61 42 6f 78 /MediaBox 9
30 20 30 30 30 30 30 20 6e 0.00000.n 9
30 30 30 30 30 30 30 30 31 000000001 9
32 20 30 30 30 30 30 20 6e 2.00000.n 9
33 20 30 30 30 30 30 20 6e 3.00000.n 9
35 20 30 30 30 30 30 20 6e 5.00000.n 9
37 20 30 30 30 30 30 20 6e 7.00000.n 9
65 6e 64 73 74 72 65 61 6d endstream 9
73 74 61 72 74 78 72 65 66 startxref 9
20 36 35 35 33 35 20 66 .65535.f 8

85 30 30 30 30 30 30 30 30 30 30 20 0000000000. 11
2f 52 65 73 6f 75 72 63 65 73 /Resources 10
2f 43 6f 6e 74 65 6e 74 73 /Contents 9
2f 4d 65 64 69 61 42 6f 78 /MediaBox 9
30 20 30 30 30 30 30 20 6e 0.00000.n 9
30 30 30 30 30 30 30 30 31 000000001 9
33 20 30 30 30 30 30 20 6e 3.00000.n 9
35 20 30 30 30 30 30 20 6e 5.00000.n 9
36 20 30 30 30 30 30 20 6e 6.00000.n 9
65 6e 64 73 74 72 65 61 6d endstream 9
73 74 61 72 74 78 72 65 66 startxref 9
20 36 35 35 33 35 20 66 .65535.f 8
25 50 44 46 2d 31 2e 34 %PDF-1.4 8
2f 43 61 74 61 6c 6f 67 /Catalog 8
2f 4c 65 6e 67 74 68 20 /Length. 8

Table 3.3: Top 15 n-grams from featrue distributions generated using different sized learning
sets. Non-printable ASCII values in ASCII column are displayed as “.”

85 PDF files taken from the a zipfile from the govdocs1 corpus [7]. Each zipfile contains 1000
randomly chosen files from the govdocs1 corpus. The first row contains the top 15 common
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n-grams from 20 PDF files that are a subset of the 85 PDF file set. The second row contains
the top 15 n-grams from a subset of 50 PDF files and the third row contains the top 15 n-grams
from all 85 PDF files in the set.

The paragraphs above describe characteristics that are distinct to the PDF filetype and should
be expected to be found within a feature distribution of the PDF filetype. However, some of
the characteristics listed will vary from document to document. For example, in Table 3.2
the set with 20 files had the common 18-gram . 0 0 0 0 0 . n . . t r a i l e r . . This is
likely to be part of the “trailer” ASCII string marking the trailer sections of the 20 files in the
set. However, the 50 and 85 file sets did not have this 20-gram, instead they both had the
7-gram t r a i l e r 2. In this case, the larger file sets produced a more distinct n-gram. If
the feature distribution generated from the set of 20 learning files was used to try and iden-
tify PDF files, the 18-gram . 0 0 0 0 0 . n . . t r a i l e r . may very well not be a great
feature since the subgram . 0 0 0 0 0 . n . . may not always be located directly in front of
the t r a i l e r . subgram. However, the learning set of 20 files did produce distinct n-
grams that are very useful long n-grams that can be applied to identification. The n-grams
/ F o n t D e s c r i p t o r . and / W i n s A n s i E n c o d i n g appeared in all the
files in the set of 20 PDF files. However, these n-grams are identifiers and won’t necessar-
ily appear in all PDF files (and indeed, they were not in the 50 file set or the 85 file set.) In
this case, the smaller set generated characteristics that are more useful to building a model of
characteristics of PDF files.

The size of the sets also impacted the number of n-grams found. The set of 20 files produced
571 n-grams while the set of 50 files and the set of 85 files produced 242 and 101 n-grams
respectively. The difference between the numbers of n-grams between the set of 20 files and the
50 and 85 file sets are 57% and 82.3% respectively. The difference between the 50 file set and
the 85 file set was 58%. Although the set of 20 files produced the most common and longest
features of the files sampled, the longer features (ngrams) may not be as useful to represent all
PDF files as the smaller ones they are related to in the other two sets which are more distinct of
PDF files. Further, having more files in a set does not necessarily guarantee that features that are
characteristic of a filetype will be found. For example, the 12-gram / F l a t e D e c o d e

was found in the set of 50 files but not in the set of 85 files. The 12-gram is part of an embedded
object that has been compressed. Although not necessarily in every PDF in existence, it is

2These 7-grams were not included in Table 3.3 since they were not in the top 15 n-grams but they were present
in the respective feature distributions

40



fairly common to compress some data in a PDF file. In this case, the set of 85 files eliminated
characteristics that would have been useful for identification.

The learning sets used in this thesis were all based on sets of 20 files. Although this section
demonstrated that the set of 50 files made a suitable choice in some cases for a learning set of
PDF files, the same may not be for other types of files. PDF files are container files that clearly
have many distinct characteristics that can be used to identify them. However, learning sets of
20 files for other filetypes that are either less sophisticated file containers or are files consisting
of a single primitive type may work just fine for those filetypes. The next section discusses
summarized n-grams and how they can positively impact n-gram generation.

3.4 Software Development Overview
Filetype identification utilizing n-gram analysis has so far only utilized short n-grams of one or
two bytes in size. The total space of short n-grams is relatively small (256 possible unigrams,
65,536 possible bigrams) and sampling all short n-grams in a file will produce a dense distribu-
tion of the frequencies of all possible n-grams in the space. Some of the n-grams may not occur
within the file. These zero frequencies are important because the lack of certain n-grams could
point to a feature that is indicative to a particular filetype within this “small” space of n-grams.
However, as the size of an n-gram increases for each byte added, the space increases exponen-
tially. This exponential space increase will cause an increasing number of long n-grams to have
zero frequencies. This ever increasing number of zero frequencies within the distribution of the
n-gram space will cause the distribution of frequencies to become sparse. The importance of
zero frequencies then diminishes as it becomes a dominant feature across filetypes. Popular,
naı̈ve machine learning techniques expect the data it is fed to be dense and therefore can not
be depended on to produce accurate results with sparse data. One of the reasons why previ-
ous implementations have only used short n-grams is due to their implementation techniques.
Previous researchers used a single array a[256] to hold byte frequencies, a two dimensional
array a[256][256] to hold bigram frequencies, and proposed using a three dimensional array to
hold trigram frequencies. Clearly, this implementation does not scale. The algorithm to create
long n-gram analysis described in this thesis first builds a list of commonly occurring n-grams
within a set of files rather than keeping track of the frequencies of every n-gram within the
space of the n-gram size. Then for each successive file in the set, all of a file’s n-grams are
checked to see whether or not the n-gram is contained in the running list. If an n-gram is found
to be contained in the list but not within a file, that n-gram is removed from the list. After all
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files have been processed, the list contains all the n-grams that were found in all of the files.
The classification process in this thesis generates distributions of filetypes out of properly la-
beled learning sets. For each file within a test set, the filetype of a test file was determined
by whichever frequency distribution had the highest average of matching long n-grams. From
feature generation to classification, this filetype identification algorithm attempts to exploit the
sparse nature of the occurrences of long n-grams in files and make predictions of the file or file
fragment’s type based on those features detected. Clearly more sophisticated classifiers could
be used with respect to n-gram features such support vector machines or tree-based classifiers.

The programming language selected was C++ mainly due to the familiarity and preference of
the researcher and the Standard Template Libraries’ (STL) offering efficient implementations of
associative storage containers. The development environment chosen was Linux, kernel version
2.6.32-SMP, and the tools developed were run on a laptop with a dual-core 2.0GHz AMD Turion
64-bit processor with 4GB of RAM.

3.4.1 Software Design
The first application, featuregen, takes sets of exemplar files and generates a feature distribution
for each set. This application utilizes a binary file format to save the generated distributions
to a file that can be accessed at a later time. In order to decrease the amount of n-grams in
a distribution, n-gram subset removal was implemented in featuregen as a final pruning step.
Subset removal works by taking each n-gram within a distribution and compares it to each n-
gram that is of size n+1. If the n-gram is found within any other n-gram, it is removed from the
distribution. For example, if the n-gram a b c is in the distribution and the n-gram a b c d is
also present, then a b c will be removed since it is a subset of a b c d .

The second application featurecomp was developed to take saved distribution data files, recon-
struct the distributions in memory, map unknown files into memory, and then autonomously
classify the unknown files based on an algorithm. Upon completion, featurecomp saves a con-
fusion matrix based on the autonomous classification of the files. Additional details of both
applications will be discussed later on in this chapter.

Summarized n-grams were implemented in both applications. Feature distribution generation
utilizes summarized n-grams by creating a summarized n-gram from each n-gram taken from a
file. Each n-gram is first run through the tolower() string method in order to convert all capital
ASCII values (if any are present in the n-gram) to their lowercase equivalent. Next, the n-gram
is run through a method that converts all ASCII integer characters to the character “5”. Upon
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completion of both methods, the n-gram is then a summarized n-gram and is ready to be inserted
or searched for in a dictionary. The same methods are used for featurecomp. However, rather
than using them on each n-gram in an unknown file, the whole file is fed through each method.
After the file has been converted, each n-gram can be analyzed against all dictionaries in order
to map features to a filetype.

3.4.2 Feature Distribution Generation – “FeatureGen”
As stated earlier, the main purpose of this application was to take a learning set of files con-
sisting of a single type and construct a feature distribution from the minimum n-size up to a
user specified n-size. This application takes a minimum of two command line arguments: the
directory containing the set of learning files and the maximum n-size. The maximum n-size
argument is required because the application will iterate through the generation algorithm until
it reaches the maximum n-size. For the purpose of this thesis, a hard-coded minimum n-size
of 2 was chosen because unigrams, while useful for frequency distributions, are not useful for
feature distributions utilizing long n-grams.

At run time the application maps the first file within the learning set into memory. It then
generates lists of n-grams from n-size 2 up to the user specified maximum n-size. An STL map
object is utilized to store each list in key-value pairs: the key being the n-gram stored within a
string object and the value being an integer value that has uses for various methods implemented
within the application.3 After generation of each list for an n-size, the map object is placed into
an STL vector object. The lists stored in the vector object are used as the “running” list of
n-grams.

With each following file in the learning set, each list in the vector object is intersected with
the file and placed back into the vector object. Each intersection of the running list and a file
contains the n-grams common to the files processed up to that point. Upon completion of the
intersection of the last file with the running list, the resulting lists in the vector object contain
the n-grams that were common to all the files in the learning set. All together, the lists comprise
all the n-grams that are common to the filetype and all together can be described as the feature
distribution of the filetype.

As long as it was not disabled at run time, subset removal is performed. This process takes

3For clarification, the term “list” shall refer to the STL map object that is being utilized to store lists of n-grams
and not the STL list object itself. The STL list object is a doubly liked list and for the purpose of feature distribution
generation, the STL map object was better suited.
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each n-gram from a list containing n-grams of size n and uses the STL string find() method
and compares the n-gram to each n-gram in the n+1 sized list. If the find() method returns
any value greater than or equal to zero (the index in the string where the substring was found)
it is removed from the n-sized n-gram list. This method gives a benefit to performance by
significantly reducing the overall size of the feature distribution. The smaller the size of the
lists, the less string comparisons featurecomp needs to do when classifying unknown files. After
subset removal, the list data files are saved to disk and a split-hex view text file is outputted to
the working directory displaying all the common n-grams from the minimum n-size up to the
user specified n-size. If any list in the generated feature distribution ended up being empty then
no file for that n-size will be saved. The list data file is a binary file that contains all information
about a list of a single n-size that is necessary to reconstruct them in memory. For further details
on the structure of the data file, see the source code for details.

3.4.3 Feature Comparison – “FeatureComp”
The featurecomp program loads the saved n-gram lists and classifies unknown files. For clarifi-
cation, the term unknown files refers to files or file fragments that are contained within a test set
or files that have not been verified to actually be of the type specified by their file extensions.
featurecomp implements a simple scoring algorithm. If a file or file fragment contains more
features of one feature distribution than any other distribution, then the identification of the file
is made based on that.

The first thing featurecomp performs at run time is to go to a user specified location that contains
all the n-gram list data files that the user wishes to utilize for the classification process and
makes a record of all the data files found. For each data file in the record, featurecomp groups
the records together by the filetype. Next, the individual data files in each data set are then
sorted in ascending order based on the n-gram size. Once this process is complete, featurecomp

has the feature distributions for the filetypes previously observed while gathering the data files.

The next step in the classification process looks in the user specified directory that contains
the files to classify. For each file in the unknown file set, the file is mapped into memory.
featurecomp then performs an intersection between the mapped file and every data file within
each feature distribution, in the same manner featuregen performed intersections. Before each
intersection, the number of n-grams in an n-gram data file is saved. After the intersection, a new
n-gram list is generated containing the n-grams that were found within both the n-gram list data
file and the unknown file. The number of n-grams in this new list is divided by the number of
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n-grams saved before the intersection. This gives the precentage of n-grams contained in the n-
gram list data file that were also found within the unknown file. This percentage is calculated for
each n-gram list within the feature distribution and stored. These percentages are then summed
and divided by the amount of n-gram lists in a feature distribution, giving the average of the
precent of n-grams present in a file that are part of a feature distribution. The average is now the
commonality between a file and a feature distribution. This commonality is then saved and the
technique is conducted for each feature distribution that is compared to a file. Once all feature
distributions have been intersected with the mapped file, featurecomp then assigns the filetype
of the file by whichever feature distribution had the highest commonality with the file.

The way featurecomp performed the averaging had to be adjusted to accommodate the different
numbers of data files within each data set. featuregen will not save a data file for an n-gram list
that does not contain any n-grams. Therefore, feature distributions can have different amounts
of data files within them. If the commonality was computed using only the sum of the n-gram
presence percentages divided by the sum of the data files within a data set, then the commonal-
ity averages would not be equally weighted for each feature distribution. For example, take two
feature distributions A and B; A with only two n-gram list data files (2-grams and 3-grams) and
B with three data files (2-grams, 3-grams, and 4-grams). If both data sets had 100% common-
ality for the 2-grams and 3-grams with a test file that is of type B, and data set B only had 50%
commonality with the test file, then the test file would inaccurately be assigned type A since it
would have a higher commonality average. However, if a zero percent average was averaged
into data set A’s commonality average (meaning A has no feature n-grams of size 4), feature
distribution B would have the higher commonality average and the test file would accurately
be classified. In order to implement this into featurecomp, it keeps track of the highest n-size
observed for all feature distributions and adds a zero percent to the percentages of matching
n-grams whenever a feature distribution is missing a list of n-grams for an n-size.
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CHAPTER 4:
Experiments

4.1 Axelsson File Set
To test the long n-gram analysis approach described in Chapter 3, I used Axelsson’s data set
to compare the long n-gram approach to another filetype identification technique. Axlesson
conducted 10 trials within his experiment, each with a different set of files from the Garfinkel
et al. corpus. Axelsson provided me with the lists of files used during his experiments and the
offsets of all the file fragments that were generated from these files. For this experiment, the set
of files used was from the first trial in the Axelsson experiment, identified by Axelsson as set
“NEW-EXP-0”, containing 267 files of 28 different filetypes. The 512-byte file fragments were
generated by parsing his list of file fragment offsets and grabbing the data from the files with a
Python program.

During the course of setting up the experiment, it was discovered that many files in the test
set used in Axelsson’s experiment were mislabeled. For consistency with Axelsson’s work, all
of the experiments presented in this chapter were performed with both Axelsson’s incorrect
labeled set and with a correctly labeled set. The following are some examples of the mislabeled
data; 10 out of the 10 JAR files, 8 out of 10 TTF files, 10 out of 10 ZIP files and 8 out of 10
XBM files were either HTML files or changelog text files.

In general, the large n-gram approach outperformed Axelsson’s NCD approach even with im-
properly labeled training data. With correctly labeled training data, the performance was even
better. We do not know how well Axelsson’s approach would work with correctly labeled data.

4.1.1 Setup
Feature distribution generation over learning sets containing relatively large files (>10MB) take
longer amounts of time to generate. Therefore, in order to keep the feature distribution genera-
tion time for all 28 filetypes used in the experiment to a minimum and to create representative
feature distributions of filetypes, learning sets were built with 20 files each. Summarized n-
grams were used during generation in order to maximize the production of distinctive n-grams
versus the learning set size.

The intention was to utilize the Garfinkel et al. govdocs1 corpus to build the learning sets.
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However, for some filetypes, such as XBM (X BitMap files), there were not enough of the
files present within the corpus to build a learning set that would not include files that were also
within the test set specified by Axelsson. Therefore, the govdocs1 corpus was utilized as much
as possible but was supplemented with some files gathered from publicly available resources
on the Internet. Each file within the learning set was hand verified to be properly labeled and
then distributions for each filetype were generated. The PUB filetype (a Microsoft Publisher
document associated with MS Office suite) did not end up having any common n-grams among
the 20 files in the learning set. Any file or file fragment in the test set that was a PUB file or
originated from one was given the classification of UNK unless it shared common n-grams with
another filetype, which in that case would be classified as that filetype.

4.2 Experiment 1 – Classification of Whole Files
The first experiment conducted was classification of complete files within the Axelsson NEW-
EXP-0 test set. Table 4.1 shows the confusion matrix of the classification results. The accuracy
for this experiment was 49%, with an average precision of 51% and average recall 48%. Al-
though those results are not remarkable, there are some interesting results within the confusion
matrix.
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Files (%)

BMP 8 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 80

CSV 0 0 1 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0

DOC 0 0 3 0 0 0 0 1 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 7 42

DOCX 0 0 0 8 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 88

EPS 0 0 0 0 10 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 90

GIF 1 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 90

GZ 0 1 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 90

HTML 0 0 0 0 0 0 0 3 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 33

JAR 0 0 0 0 0 0 0 0 0 1 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 10 0

JAVA 0 0 0 0 0 0 0 0 0 9 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 90

JPEG 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 100

JS 0 0 0 0 0 0 0 0 0 5 0 3 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 10 30

PDF 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 100

PNG 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 100

PPS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 10 0

PPT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 9 100

PPTX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 10 100

PS 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0

SQL 0 0 0 0 0 0 0 0 0 4 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 10 0

SWF 3 3 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 10 10

TEXT 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 8 0

TTF 0 1 0 0 0 0 0 0 0 4 0 3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 10 0

UNK 0 5 0 0 0 0 0 0 0 4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0

XBM 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 10 20

XLS 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 1 0 9 55

XLSX 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 5 0 0 10 50

XML 0 0 0 0 0 0 0 0 0 3 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 6 0 10 60

ZIP 0 0 0 0 0 0 0 0 0 7 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0
Total 12 10 4 8 15 9 9 7 0 75 10 19 10 11 4 22 10 0 1 1 0 0 0 2 6 5 16 1 267Classifications

Precision (%) 66 0 75 100 66 100 100 42 0 12 100 15 100 90 0 40 100 0 0 100 0 0 0 100 83 100 37 0

Table 4.1: Axelsson NEW-EXP-0 File Set – full file classification confusion matrix
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The JAVA filetype was the most classified filetype with 75 total classifications with a precision
of 12.% and a recall of 90%. The precision for identifying JAVA files is low. However the
confusion matrix shows the the majority of the false positives for the JAVA filetype come from
purely textual based files (i.e.,: CSV, HTML, SQL, JS, etc). For example, the recall for HTML
files was 33%: 3 out of 9 correctly classified as HTML with the remaining six files being clas-
sified as JAVA. For CSV files, the recall was zero but 9 out of the 10 CSV files were classified
as JAVA. For XBM files, the recall was a low 20% (8 out of 10). However, as noted in the
introduction for this section, 8 out of 10 XBM files were either HTML files or changelog text
files. The XBM files that were not correctly classified (which were actually text based files)
were classified as JAVA files. In the same manner, the ZIP file classifications were interesting
and, reiterating, all 10 ZIP files in the test set were of a textual filetype (HTML or text file). For
the ZIP file classifications, 7 out of the 10 ZIP files were classified as JAVA with the remaining
3 being classified as JS files, another textual based filetype. Although the individual precision
for each textual based filetype was low, overall, the long n-gram approach can be said to be
effective at recognizing filetypes that are purely textual based. This will be further discussed
in a later section where the commonly occurring n-grams among the test set are presented and
discussed.

The Microsoft Office files that conform to the Open XML format (i.e.,: DOCX, PPTX, XLSX)
performed rather well. All three filetypes had a precision of 100%. However, these filetypes are
actually valid ZIP archive files. These files are well known to be high entropy and, as discussed
previously in this thesis, high entropy data has the characteristic of random data. Multiple files
containing high entropy data will more than likely not share distinct long n-grams. However,
the confusion matrix shows the contrary. The ZIP archive file format stores the names of the
file(s) and folder(s) it contains in plain text within the ZIP file. The Open XML format uses a
very specific naming scheme and archive structure to store the data. These long n-grams are
very distinctive and the algorithm used for filetype identification was able to use these long
n-grams for high precision identification.

The presence of file headers also contributed to the success of some high entropy filetypes. The
BMP, GIF, GZ, JPEG, and PNG files all had relatively good precision and recall rates. These
files all have distinct long n-grams located within their respective file headers that enabled these
filetypes to be identified with long n-grams.

Table 4.2 lists 10 out of the 28 filetypes in the test set had precisions of 90% or greater. Although
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File Type Precision Recall
DOCX 1.00 0.89

GIF 1.00 0.90
GZ 1.00 0.90

JPEG 1.00 1.00
PDF 1.00 1.00
PNG 0.91 1.00
PPTX 1.00 1.00
SWF 1.00 0.10
XBM 1.00 0.20
XLSX 1.00 0.50

Table 4.2: Filetypes with greater than 90% precision for whole file classification

only 2 out of the 10 XBM files in the test set were actually XBM files, the results for XBM
files are still included in Table 4.2. If the 8 XBM files that were incorrectly labeled were
correctly labeled, the recall for XBM files would be 100%. With the exception of the GZ and
SWF filetypes, the other filetypes within Table 4.2 contained long and distinct n-grams for their
feature distributions. These features were either part of the structuring of the filetype (i.e.,: PDF,
JPEG, XBM) and/or related to the header/footer information of the filetype (i.e.,: GIF header).
These features enabled the classification method to precisely classify these filetypes based on
the presence of these features. Interestingly, the GZ filetype only had 161 total n-gram features
in its distribution. The highest n-gram was the 3-gram 0x1f 0x8b 0x08 and the remaining
bigrams ranging in values from 0x00 0x35 to 0xfa 0x35 . The combination of the 3-gram
header and the characteristic high entropy data contained within a GZ file producing a wide
range of bigrams made the GZ filetype distinguishable even though the structure of a GZ file
is simplistic. The SWF filetype, although it produced a 100% precision, only had one correct
classification made. The remaining 9 SWF files in the test set were incorrectly classified as
either CSV, BMP, HTML, or ZIP.

XLSX had the lowest recall of 50% out of the top performers for this experiment. Five of the
ten XLSX files were correctly classified. Four were classified as JAVA and one was classified as
XLS. The XLSX format is zipped XML file developed by Microsoft. The XLSX format can be
opened outside of an XLSX handling application by unzipping the file using any decompression
utility that supports ZIP compression and archiving. The contents of the file is stored in XML
and can be browsed using any XML browser. Upon investigation of the low recall rate for the
XLSX filtype, it was discovered four of the ten XLSX files were actually HTML files. Further,
since one of the XLSX files were supposedly misclassified as an XLS file, that file was not
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found to be a ZIP file and was in fact an XLS file. With these facts revealed, the recall of the
XLSX type is actually 100%.

4.3 Experiment 2 – Classification of File Fragments
Table 4.3 displays the confusion matrix for the 512-byte file fragment n-gram analysis for the
Axelsson test set. The accuracy for this experiment was 20%, with an average precision of 27%
and average recall 21%. These results are even less remarkable than the full file analysis from
experiment one. However, there are interesting parallels from the first experiment that can be
observed within this experiment.
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BMP 23 15 0 0 0 0 0 6 0 18 0 0 0 21 0 0 1 0 0 2 0 0 9 0 16 0 1 10 122 18

CSV 0 35 0 0 0 0 0 0 0 85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 122 28

DOC 45 15 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 29 91 0

DOCX 2 3 0 0 1 0 0 0 0 14 0 1 1 3 0 0 0 0 4 0 0 0 0 0 0 0 1 105 135 0

EPS 0 0 0 0 124 0 0 0 0 13 0 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0 0 0 161 77

GIF 15 0 0 0 0 32 0 0 0 0 6 0 0 39 0 0 0 0 7 9 0 0 0 0 3 0 0 21 132 24

GZ 0 18 0 0 2 18 11 0 0 0 1 7 0 8 0 0 0 1 53 15 0 0 0 0 0 1 0 9 144 7

HTML 0 0 0 0 0 0 0 6 0 88 0 0 0 0 15 0 0 0 0 0 0 0 0 0 3 0 23 0 135 4

JAR 0 0 0 0 0 0 0 0 30 36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 66 45

JAVA 0 0 23 0 0 0 0 0 0 119 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 142 83

JPEG 15 8 0 0 0 9 0 0 1 0 64 0 1 12 0 0 0 0 13 9 4 0 0 0 0 0 0 14 150 42

JS 0 0 0 0 0 0 0 0 0 47 0 0 0 0 10 0 0 0 25 0 0 0 0 0 0 0 0 0 82 0

PDF 0 2 0 0 0 14 0 0 0 0 15 0 80 0 0 0 0 0 6 0 0 0 0 0 33 0 0 0 150 53

PNG 0 0 0 0 0 42 0 10 0 0 0 0 0 40 0 0 2 0 41 1 0 0 0 0 0 0 0 14 150 26

PPS 1 3 0 0 0 12 2 0 0 0 35 0 2 55 0 0 3 0 10 11 1 0 0 0 1 0 0 14 150 0

PPT 23 5 0 0 0 8 1 0 0 0 0 0 0 34 0 1 0 0 7 0 1 0 0 2 5 6 0 42 135 0

PPTX 1 4 0 0 0 6 2 0 0 0 0 0 0 12 3 0 2 0 3 4 0 0 0 0 0 0 0 113 150 1

PS 0 0 0 0 27 0 0 0 0 0 0 0 0 0 0 0 0 42 0 0 0 0 0 0 0 0 6 0 75 56

SQL 0 0 0 0 0 0 0 0 0 71 0 21 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 96 0

SWF 15 32 0 0 0 11 0 2 0 0 15 14 0 14 0 0 0 0 0 5 0 0 0 0 0 0 0 0 108 4

TEXT 0 11 1 0 0 0 0 0 0 54 0 0 0 0 0 0 0 0 15 0 0 0 0 0 15 0 15 0 111 0

TTF 0 15 0 0 0 0 0 0 0 84 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 106 0

UNK 0 5 0 0 0 0 0 0 0 60 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 67 0

XBM 0 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 57 12

XLS 26 0 0 1 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 59 0 15 14 125 47

XLSX 1 0 0 0 0 0 0 0 0 52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0 2 78 144 0

XML 0 0 0 0 0 0 0 0 0 14 0 3 0 0 4 0 0 0 0 0 0 0 0 0 0 0 89 0 110 80

ZIP 0 0 0 0 0 0 0 0 0 79 0 0 0 0 12 0 0 0 15 0 0 0 0 0 0 0 5 0 111 0
Total 167 171 24 1 154 152 16 25 31 884 136 46 84 240 59 1 8 67 199 56 6 0 9 9 146 7 166 463 3327Classifications

Precision (%) 13 20 0 0 80 21 68 24 96 13 47 0 95 16 0 100 25 62 0 8 0 0 0 77 40 0 53 0

Table 4.3: Axelsson NEW-EXP-0 File Set – 512-byte file fragment classification confusion matrix
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The JAVA filetype was again the filetype with the most classifications made (884 classifica-
tions). Like in the first experiment, most of the false positives for the JAVA type came from
file fragments that were from textual based filetypes: CSV, HTML, JS, SQL, TEXT, and XML.
The n-gram distribution of the Java files contained 87 n-grams from lengths 2 up to 7 bytes in
length. The bi-grams were the majority of the n-grams, making up 71% (62 out of 87) of the
n-gram distribution. Java source code files are all text files and, as inspection of the distribution
of common n-grams for Java files reveal, all n-grams are whole English words or fragments of
common English words. Further, the n-gram distribution for Java files was larger than the distri-
butions for the CSV, SQL, and TEXT filetypes, which helps to explain how/why these filetypes
were commonly mistaken for Java source code file fragments; there were more English n-grams
in the Java source code n-gram distribution than the others.

The JPEG filetype also exhibited some interesting false positives. As was discussed earlier,
file containers can embed entire files within themselves. The JPEG filetype had false positives
coming from PDF, PPS, and SWF files. Each of these three filetypes are file containers. The
PDF filetype has been extensively covered within the discussion of this thesis. The PPS filetype
is a Microsoft Office powerpoint file that can be viewed by MS PowerPoint or any powerpoint
capable viewer. These files, once created, are read-only and can directly embed many other
files including JPEG files. The SWF filetype is an Adobe “Small Web Format” file. These
files are used to store multimedia content for mobile applications and can be viewed by any
Internet browser that has the appropriate plug-in installed. These files store text, audio, and
video content and are capable of being interactive. The SWF specification [20] states that JPEG
files can be directly embedded within a SWF file. Files from each of the three filetypes were
inspected and it was discovered that they did in fact contain JPEG images embedded within
the data. For example, a 512-byte file fragment in the test set for this experiment originating
from the govdocs1 file 281940.pps (beginning at decimal byte offset 232) contained a valid
JFIF header. This caused the file fragment to be classified as a JPEG rather than its proper
classification of PPS. The other two filetype fragments (PDF and SWF) also contained valid
JPEG data within their data for this Experiment. The GIF filetype also had similar false positive
characteristics, as seen in Table 4.3 in column “f”, where file fragments from file containers
such as PDF, PPT, PPS, and SWF were classified as GIF file fragments.

Although the overall accuracy for this experiment was quite low, the simple classification
method used to classify files produced some interesting results as seen in Table 4.3. Although
EPS and PS files are different filetypes, they are closely related. The same can be said for MS
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Office Open XML files relating to ZIP files and all purely textual files such as HTML, SQL,
TEXT, XML, and TTF having the same data type. While each of the filetypes used in Ex-
periment 1 and Experiment 2 are distinct filetypes and require applications that adhere to the
respective file format specifications to read and write to files of these filetypes, many of the
filetypes can be said to be in the same class of another filetype or a subset of another distinct
filetype. For example, the complete file 281940.pps, discussed in the previous paragraph, was
classified as a PPT file in Experiment 1. This is an incorrect classification. However, a PPS
file is essentially a read-only PPT file meant to be viewed as a slideshow. In this respect, the
classification process was able to make a classification that was at least related to the correct
filetype.

The Open XML documents are stored within a ZIP compressed file. Any ZIP capable archive
viewer can view/extract the data within any MS Office Open XML file. However, the MS Office
suite will not know what to do with a ZIP file that contains non Open XML data. However, Table
4.3 shows the vast majority of DOCX and PPTX file fragments and the majority of the XLSX
fragments were classified as ZIP files.

4.4 Experiment 3 – Axelsson’s Relabeled Test Set
In order to make a better evaluation of the performance of long n-grams for filetype identifi-
cation, the Axelsson test set used for Experiments 1 and 2 was relabeled to reflect the proper
filetypes of all the files in the set. Experiments 1 and 2 were then re-run in order to see if
any improvements to long n-gram filetype identification were made. Since all the JS, ZIP, and
JAR files in the original test set were labeled improperly, those filetypes will not be included
within the resulting confusion matrices since these types are no longer present within the cor-
rectly labeled test set. Further, three files in the original set were renamed as DBASE3 files
after the govdocs11 corpus was corrected [21]. I did not have any feature distributions created
for this filetype and upon inspection of these three files, discovered that these files contained a
large amount of ASCII text. It was decided to run the newly renamed sets through “feature-

comp” without building a feature distribution for DBASE3 files. These three DBASE3 files and
associated fragments were identified as Java source code files/fragments. The reason for this
identification is explained in section 4.5.

Table 4.4 shows the confusion matrix of complete file classification on the properly labeled
Axelsson set. The accuracy for full file identification decreased from 49% to 48%. However,
the average precision increased from 51% to 56% and average recall increased from 48% to
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60%. The biggest improvement in precision was the HTML filetype. In Experiment 1, the
HTML filetype had a low 42% precision. With the relabeled set, the precision rose to 100%.
In the original set, there were only nine HTML files in the set. After the set was relabeled,
this number dramatically increased to 57. As was discussed in the beginning if this chapter,
many of the improperly labeled files were actually HTML files. This is a result of the govdocs1

generation from US Government websites where a file was requested from a government server
that did not exist. Instead of obtaining the requested file, the webserver generated an HTML
error page listing the name of the file that was requested. This HTML page was then saved into
the govdocs1 collection with the name of the requested file. This issue has since been corrected
in the govdocs1.1 corpus [21].
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BMP 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 100

CSV 0 0 1 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0

DOC 0 0 2 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 5 40

DOCX 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 100

EPS 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 100

GIF 1 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 90

GZ 0 1 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 90

HTML 0 0 0 0 0 0 0 7 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 57 12

JAVA 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 100

JPEG 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 100

PDF 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 100

PNG 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 10 100

PPS 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 10 0

PPT 0 0 0 0 0 0 0 0 0 1 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 9 88

PPTX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 10 100

PS 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0

SQL 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 6 0

SWF 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2 0 8 12

TEXT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TTF 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0

UNK 0 5 1 0 0 0 0 0 19 0 0 1 3 0 0 0 1 0 0 0 0 0 0 0 10 40 0

XBM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 2 100

XLS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 5 100

XLSX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 5 0 6 83

XML 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 6 7 85
Total 11 10 4 8 15 9 9 7 92 11 10 11 4 21 10 0 1 1 0 0 0 2 6 7 18 267Classifications

Precision (%) 72 0 50 100 66 100 100 100 9 90 100 90 0 38 100 0 0 100 0 0 0 100 83 71 33

Table 4.4: Axelsson NEW-EXP-0 File Set – full file classification confusion matrix with correctly labeled files
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The PS and EPS files (Adobe PostScript and Encapsulated PostScript files respectively) are
essentially the same filetype with the exception that EPS files are meant to be encapsulated
within PS files and therefore contain boundary boxes within its syntax and will not include PS
“newpage” commands. Otherwise, the syntax for both filetypes are identical. In Table 4.4 the
precision for PS files was zero, meaning there were zero PS files identified as PS files. As the
PS column in Table 4.4 shows, there were also no false positives made, which is still significant
since no other non PS files were mistakenly classified as PS files. The EPS recall was 100%,
meaning all EPS files were properly identified as EPS files. However, the precision for EPS files
was only 66%. Looking at the EPS column in Table 4.4, 10 out of 15 classifications made were
correct, the remaining 5 false positives were all five PS files in the test set being misclassified.
While these five classifications are incorrect, they are are not completely false due to the fact
that PS and EPS files are essentially the same filetype.

Overall, the performance of full file filetype classification for full files can be attributed to
the presence of distinguishing long n-grams within the filetype. For example, BMP, PNG, GIF
filetypes only contain distinguishing n-grams within the file header, any data after the file header
is not structured in a way that is distinct to the filetype. The precision for PNG and GIF files
were both 100% and the BMP precision was 72%, which is still a good result for a filetype
with minimal distinct n-grams. For all four of these filetypes, the long n-gram approach to
filetype identification worked as well as file header identification (with the exception of the
BMP precision).

Other filetypes, such as the Open XML Microsoft Office files, performed better for long n-gram
analysis than it would have for file header analysis or byte frequency distribution. File header
analysis on these filetypes would only be able to reveal these filetypes as being ZIP files, not a
wrong classification but still lacking in a more precise identification. Byte frequency analysis
(using unigrams or bigrams) would only reveal the data to be high entropy and, depending on
the classification method, would only be able to identify these filetypes as ZIP files. However,
as Table 4.4 shows for the DOCX, PPTX, and XLSX filetypes, long n-gram analysis have great
success at identifying these file not only as Open XML files but was able to correctly identify
all DOCX and PPTX files and had a 71% precision for XLSX files. These filetypes, although
containing a large amount of high entropy data, contain very distinctive long n-grams that are
not part of the file header and allow for easy identification of these filetypes.

Textual files is where long n-gram analysis failed to provide accurate results for specific file-
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types. Textual filetypes such as CSV, SQL, and Java Source code do not have distinctive n-
grams that can be used for identification. However, Table 4.4 shows textual filetypes all seemed
to cluster around the Java source code files. The reason for textual files and file fragments clus-
tering around a single filetype will be discussed further in the following sections. A simple
explanation for these results is that rather than identifying files based on distinctive n-grams,
these filetypes are being identified based on the textual content of the files.

Table 4.5 shows the same characteristic precision increases for HTML, XLS, and XML filetype
classification of file fragments. The same characteristics with respect to fragments coming from
embedded files in file containers and related filetypes being classified together are apparent in
Table 4.5 as they are in Table 4.3.
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Recall
File Type B
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Files (%)

BMP 31 15 0 0 0 0 0 0 0 0 0 23 0 0 1 0 0 2 0 0 9 0 3 13 0 97 31

CSV 0 35 0 0 0 0 0 0 85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 122 28

DOC 62 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 12 0 75 0

DOCX 73 3 0 0 1 0 0 0 0 0 1 4 0 0 0 0 4 0 0 0 0 0 0 34 0 120 0

EPS 0 0 0 0 124 0 0 0 2 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0 0 150 82

GIF 35 0 0 0 0 33 0 0 0 0 0 39 0 0 0 0 7 9 0 0 0 0 3 6 0 132 25

GZ 0 18 0 0 2 18 9 0 0 1 0 8 0 0 0 0 53 15 7 0 0 0 0 13 0 144 6

HTML 0 0 0 0 0 0 0 15 544 0 0 0 31 0 0 0 40 0 0 0 0 0 3 0 59 692 2

JAVA 0 0 23 0 0 0 0 0 104 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 127 81

JPEG 15 6 0 0 0 9 0 0 0 64 0 12 0 0 5 0 13 9 4 0 0 0 0 13 0 150 42

PDF 0 2 0 0 0 14 0 0 0 15 80 0 0 0 0 0 6 0 0 0 0 0 33 0 0 150 53

PNG 0 0 0 0 0 42 0 7 0 0 0 54 0 0 0 0 31 0 0 0 0 0 0 16 0 150 36

PPS 5 2 0 0 0 12 0 0 0 38 2 54 0 0 6 0 10 11 1 0 0 0 1 8 0 150 0

PPT 61 7 0 0 0 8 1 0 0 0 0 31 0 1 0 0 7 0 1 0 0 2 4 12 0 135 0

PPTX 37 4 0 0 0 6 2 0 0 0 0 12 1 0 0 0 3 4 0 0 0 0 0 81 0 150 0

PS 0 0 0 0 27 0 0 0 0 0 0 0 0 0 0 42 0 0 0 0 0 0 0 0 6 75 56

SQL 0 0 0 0 0 0 0 0 32 0 0 0 4 0 0 0 15 0 0 0 0 0 0 0 0 51 29

SWF 15 32 0 0 0 11 0 0 0 15 0 14 0 0 0 0 1 4 1 0 0 0 0 13 0 106 3

TEXT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TTF 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 17 0

UNK 0 31 1 0 0 0 0 0 123 0 0 2 20 0 0 0 45 0 0 0 0 0 40 0 35 297 0

XBM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 7 100

XLS 34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30 11 0 75 40

XLSX 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 15 0 90 16

XML 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 62 65 95
Total 432 170 24 0 154 153 12 22 893 133 83 253 57 1 12 66 235 54 14 0 9 9 128 247 166 3327Classifications

Precision (%) 7 20 0 0 80 21 75 68 11 48 96 21 0 100 0 63 6 7 0 0 0 77 23 6 37

Table 4.5: Axelsson NEW-EXP-0 File Set – 512-byte file fragment classification confusion matrix with correctly labeled files
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The BMP, GIF, JPEG, and PNG filetypes all had excellent precision and recall rates for full
file identification. These filetypes all contain one or two long distinctive n-grams originating
from their respective file headers. The remaining n-grams in the feature distributions were
mainly bigrams that could easily occur in random data. However, the performance of these
filetypes during full file identification indicate that the one or two n-grams coming from file
headers were enough to make accurate classifications and detections, indicating the long n-
gram approach works as well as plain file header identification for these filetypes. As was
expected for these filetypes due to the vast majority of bi-grams in the feature distributions for
each filetype, the GIF, JPEG, and PNG precisions and recalls were significantly lower during
fragment identification. For each fragment, the identification process only had the abundance
of bi-grams available to make the identifications. Interestingly, where file header identification
would not work at all since the file header would more than likely not be present or complete,
the precision rate for JPEG fragments was 48% and the precision rates for GIF and PNG were
both 21%, making the long n-gram identification method somewhat useful even here.

Like the full file identification performance, successful file fragment classification is again at-
tributed to the presence of long n-grams. When they are not present, there is no identification.
Again, take for example the BMP, GIF, and PNG filetypes. For full file identification, these file-
types had excellent precision rates. However, these filetypes only contain distinctive n-grams
in the file headers. File fragments will not likely contain a full file header. Therefore, filetypes
such as BMP, GIF, and PNG will not have any useful long n-grams to identify. Instead, these
filetypes will only be able to be identified through the occurrence of bi-grams (which has been
shown to contain a relatively small space of possible values making them not ideal for n-gram
analysis) and limited tri-grams in the feature distribution for their respective n-gram feature dis-
tributions. Table 4.5 shows just this with the low precision and recall rates for these filetypes.

4.5 N-Gram Detection Within Filetypes
Table 4.6 lists some exemplar n-grams from each filetype during two runs of “featurecomp” on
the test sets used in section 4.4: one run on the 267 properly labeled full file set and the other
on the 3327 file fragment set. The column “Occurrences” contains two sub-columns. The two
sub-columns pertain to the number of individual files and fragments the n-gram occurred at least
once in. The n-grams listed are of interest for discussion and to help understand the performance
data contained within Tables 4.4 and 4.5. In order to make the information contained in Table
4.6 more concise, all n-grams are displayed in printable ASCII. However, some n-grams contain

61



non printable ASCII byte values. In this case, non printable ASCII byte values are displayed
as “.”. In some cases it is necessary to distinguish between a simple “.” and the particular byte
value(s) that make up an n-gram. Therefore, certain n-grams contain hex values in parenthesis
in order to give the reader a clearer understanding of the n-gram byte values.

Occurrences

n Files n Fragments

File Summarized N-gram out of out of

Type (hex values in parens) 267 3327

BMP bm 149 94

......... 74 555

..(0x01). 63 194

..(.. 43 35

CSV 5555 208 1375

,5 136 185

555, 86 143

HTML ref 133 682

(0x20)the(0x20) 131 265

gov 111 339

></ 72 101

<html 57 573

<body 57 184

</html> 57 4

</body> 57 4

</head> 55 182

JAVA 55 263 2242

(0x20)5 252 1649

5(0x20) 244 1514

ed 242 1044

(0x20)( 219 732

(0x20)(0x20) 213 1226

ent 187 942

ion(0x20) 151 542

(0x20)and(0x20) 119 474

ble(0x20) 109 342

public(0x20) 82 553

(0x20)class 68 224

XML (0x20)version="5.5" 10 42

<?xml.version 9 20

DOC (0x20)55 222 1024

ation 168 563

micro 45 2

word 40 43

(0x20)document 25 18

DOCX .[content types].xml 25 34

.. rels/.relspk..-.. 25 0

...word/document.xml 8 6

.word/ rels/document 8 4

PPTX ppt/viewprops.xmlpk. 10 0

ppt/slides/ rels/sli 10 53

,...ppt/slidemasters 10 0

,...ppt/slidelayouts 10 0

XLSX xl/ rels/workbook.xm 5 1

worksheets 11 0

PDF %%eof 24 9

5.5.555.555 21 84

trailer 20 32
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endstream 10 4

startxref 10 10

5555555555.55555.f 10 0

55.5.obj 10 41

%pdf-5.5 10 2

PS %%endcomments 16 146

%%creator:. 16 102

%!ps-adobe-5.5 16 5

efont.setfont 13 73

EPS .5.55 95 473

color 88 338

55.55 56 161

width 84 294

font 81 219

showpage 16 15

moveto 15 127

(0x20)findfont 11 1

GIF ,.... 40 47

gif55a 15 3

JPEG (0xFF)(0xC4) 80 100

(0xFF)(0x00)(0x35) 56 43

(0x35)(0xFF)(0x00) 53 31

(0xFF)(0xDA)(0x00) 44 74

(0xFF)(0xDB)(0x00) 42 77

......jfif.. 39 33

PNG .png........ihdr.. 39 47

idatx 39 61

....iend.b‘ 39 1

Table 4.6: Occurrences of exemplar n-grams by filetype

The n-gram feature distribution for the BMP filetype only had four n-grams in common to
all files in the 20 file learning set. Inspection of the individual BMP n-grams should reveal
that these four common BMP n-grams are non-distinct and can easily occur in random data.
However, the accuracy for complete BMP file recognition was 100% in section 4.4. For full
files, the presence of the BMP file header enabled the long n-gram approach to successfully
identify BMP files. When the BMP file header was not present, as in the file fragment test set
where 97 BMP file fragments were present, the accuracy for BMP file identification plummeted
to 7%: after the 14-byte BMP header, there are no distinguishing characteristics of a BMP file.
Therefore, any fragment that originates from somewhere in the middle or the end of a BMP file
will not contain any distinct n-grams.

The filetype CSV had poor performance for both complete file fragment identification. The
CSV n-gram feature distribution had six total n-grams that were common to all CSV files in the
learning set. The exemplars shown in Table 4.6 were the “best” n-grams in the generated feature
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set and as can be observed, are not at all distinct. The three exemplar n-grams would be found
in any textual content that contains for example any four digit number, a comma immediately
followed by a single number, or a three digit number immediately followed by a comma. The
occurrences of these three n-grams in the counts further support the argument that these n-grams
are non-distinct since there were only 10 CSV files in the complete file set and 122 CSV file
fragments in the fragment set yet the counts for all three n-grams are significantly higher.

HTML files/fragments carried an excellent precision of 100% for full file identification and a
respectable 68% precision for file fragment identification. Although HTML is another purely
textual filetype, the relatively distinct nature of HTML tags allow for good HTML file/fragment
detection since they do not regularly occur outside of HTML documents. Notice the file counts
for the HTML n-grams </html>, </body>, and </head>. There were a total of 57 HTML
files in the test set and those n-grams occurred in 57 files out of the entire 267 file test set,
indicating that these n-grams only occurred in the HTML files. This helps establish that some
of the HTML common n-grams, although purely textual, are distinct enough to classify whole
HTML files. However, HTML files and fragments were overwhelmingly classified as Java
source code (very low recall rates for both HTML files and fragments in Tables 4.4 and 4.5). The
reason for this occurrence is due to the fact that the Java source code n-gram feature distribution
had the most textually based bi-grams and tri-grams than any other textual filetype. As seen
on Table 4.6 for HTML n-grams, the distinctive n-grams that helped to successfully classify
complete HTML files did not occur in all the HTML fragments since those fragment counts
were significantly lower than the 578 HTML fragments in the test set. Since the HTML files
were taken from US government websites and are purely textual, the abundance of English n-
grams and lack of distinctive HTML n-grams caused the HTML file fragments to correlate to
the wide range of English n-grams contained in the Java source code feature distribution. Hence
the 544 out of 692 HTML fragments being labeled as Java source code fragments in Table 4.5.

The Java files and fragments had very good recalls of 100% and 81% respectively. The precision
was very low due to the fact that there were many false positives coming mainly from textual
based filetypes. As Table 4.6 shows for the Java source code n-grams, the n-grams are intuitively
common among textual files. For example, the bigram 0x20 0x20 is a double space, common
to any written English textual content. The n-grams e d , e n t , and i o n 0x20 are common
English word endings. The n-grams p u b l i c 0x20 and 0x20 c l a s s , although part of
key words in the Java language are again very common English words. Rather than classifying
based on characteristics of the Java language, the classifications for the textual filetypes were
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actually classifying the English content of the Java source code and other textual filetypes. The
file and fragment counts for the Java classification help support this argument since there were
only nine complete Java source code files and 127 fragments.

The Microsoft Office Open XML files were able to be identified remarkably well even though
they are stored within a ZIP file that contains high entropy data. As discussed earlier, ZIP
files store the names of files and folders contained within a ZIP archive in plain text. Plain
text has been shown so far to be somewhat reliable for filetype identification as long as the
n-grams are distinctive, such as in the case of the high precision of HTML filetype identifi-
cation of complete files. The Open XML format contains distinctive n-grams for the naming
scheme that helps to identify a ZIP archive containing Open XML data. The two n-grams
. [ c o n t e n t t y p e s ] . x m l and . . r e l s / . r e l s p k . . - . . will be
found in evry Open XML compliant document file and can be seen by using the command unzip

-l “open xml archive filename” to view the files and folders inside of a particular Open XML
document file.4 These two n-grams are exemplar n-grams that help to distinguish Open XML
files. Further, the Open XML files have even more distinguishing n-grams that correspond to
the subset of Open XML files a file belongs to. For example in Table 4.6 for the PPTX, DOCX,
and XLSX rows, n-grams reflecting the type of document contained in each Open XML files
can be seen. For example the text “word” occurring within the DOCX n-grams, the text “ppt”

occurring in the PPTX n-grams, and the text “xl” occurring in the XLSX n-grams. Although
the Open XML files contain very specific distinctive n-grams, they are still ZIP archives at
a higher level which explains their poor performance during file fragment identification since
high entropy data resembles random data.

The PDF filetype experienced very good precision in both full file and file fragment identifi-
cation. As seen in Table 4.6, the many of the occurrences of the n-grams during complete file
identification reflect the number of PDF files in the test set. Further, the fragment counts shown
are less than the 150 PDF fragments in the fragment set, implicating that the n-grams in the
PDF feature distribution are distinct enough to identify PDF fragments and not be commonly
occurring over the entire fragment test set.

The EPS and PS filetypes were closely related to one another for both full file and fragment
identification. An EPS file shares the same syntax as a PS file and is meant to be embedded

4Since each feature distribution was compared to each file/fragment in both sets, the occurrences for the above
n-grams will be equal and referring to the same files/fragments for each feature distribution. This is the reason why
common n-grams across the Open XML filetypes in Table 4.6 are only listed under a single row.
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within a PS file. In a sense, they could be considered the same types of files. The relation of
EPS and PS can be seen in Tables 4.4 and 4.5. For full files identification, 5 out of 5 PS files
were incorrectly identified as EPS files. For fragment classification, 27 out of 75 PS fragments
were identified as EPS fragments. These are incorrect classifications however it shows that
PS files and fragments are again closely related to the EPS filetype. In fact, inspection of the
feature distributions for EPS and PS files revealed that they shared many of the same common
n-grams. The first three n-grams listed in Table 4.6 for the PS filetype show a file count of 16,
possibly indicating that these n-grams were detected within the 5 PS files and 10 EPS files, with
an additional occurrence in another filetype.

The GIF, JPEG, and PNG filetype listings in Table 4.6 reveal some interesting results in relation
to these types of files being embedded within other filetypes. Take for instance the GIF n-gram
g i f 5 5 a shown in Table 4.6. (Recall that this is a summarized n-gram, so the “55” may in
fact be a “87” or an “‘texttt89”. This n-gram, although alphanumeric in content, is a distinctive
n-gram since the likelihood of it occurring in random data is very low (due to the length) and
low in textual data, unless of course a document was written on the GIF file specification. The
occurrences for this n-gram show that it occurred in 15 files. However, only eight files in the
full file set were GIF files. This indicates this n-gram was detected within seven other non-GIF
files. While this cannot be factually confirmed since the software used to perform the research
in this thesis was not set up to record the filenames of the files that this n-gram occurred in, it is
still reasonable to assume that some of the files (i.e.,: PDF, PPT, DOC, etc.) in the set contained
embedded GIF files since the probability of the n-gram’s occurrence in random data is very low
and the likelihood that seven US government files are referring to the GIF file specification is
minimal. Further, JPEG and PNG file header n-grams shown in Table 4.6, which are longer
than the GIF file header n-gram and thus more distinct, were also seen in a number of files that
reasonably reflect the number of file containers in the set.
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CHAPTER 5:
Conclusion and Future Work

Filetype identification is really really two related problems: whole file identification and file
fragment identification. These problems are different because of the information available to
the identification algorithm. For full file identification, algorithms have the luxury of having
header and footer information present or at the very least (for filetypes that do not have any
header/footers specified) have the full content of a file by which to identify it. File fragments, on
the other hand, contain only a fraction (quite possibly a very small fraction) of the data contained
within a full file from which it originated and do not have easily recognizable headers or footers.
Further, the data contained within a fragment may be indecipherable without any neighboring
file fragments or information regarding the offset of where the file fragment originated from
the complete file, as is most likely the case with fragments that are compressed. Therefore,
file fragment identification must rely on feature identification rather than a file’s content or
descriptive n-grams (i.e., a file’s header).

5.1 Shortcomings of Short N-Grams
N-gram analysis is not a new approach for filetype identification. However, researchers have
only used, and continue to use, short n-grams. While some of the research presented in Chapter
2 did have some success, overall the short n-gram approach applied to filetype identification as
a general solution is highly inadequate. Short n-grams cannot provide enough of a distinction to
be able to fully identify files all the way down to their individual filetypes. For example, some
of the approaches in Chapter 2 reported the ability to reliably distinguish between high and low
entropy filetypes. While this is helpful to prevent labeling a file or fragment with a filetype
associated with the wrong entropy, it does not help to narrow down the appropriate filetype. For
instance, a statistical analysis using short n-grams of a text file would be able to distinguish it
from a JPEG, ZIP, or DOCX file. However, the same method would have a very difficult time
distinguishing between a JPEG, ZIP, or DOCX file since all three would have close to the same
entropy level.

5.2 Advantages of Long N-Grams
This thesis explored the use of long n-grams for file classification. As discussed earlier, us-
ing long n-grams poses a challenge, as many of the implementation techniques developed for
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working with short n-grams cannot be readily applied to long n-grams. Rather than tracking
the occurrences of n-grams within a multi-dimensional data structure, this thesis shows that it
is only important to keep track of commonly occurring n-grams. This can easily be done by
building representative file sets of a single filetype and take the intersection of all the files for
a particular n-gram size or a range of n-grams sizes. This produces a set of n-grams that are
common to all the files in the learning set.

Additional improvements are provided by the use of so-called summarized n-grams. Summa-
rized n-grams are created by performing a character transform on the input files prior to the
construction of the n-grams. In this case of these thesis, two transformations were used: all
capital letters were turned to lower case letters, and all numbers were converted to the number
five (“5”). Summarized n-grams significantly improved n-gram detection rates while lowering
error rates.

This thesis argues that the length of an n-gram combined with the variability of the individual
bytes making up the n-gram is what makes it distinctive: the longer the n-gram is, the less likely
it is to occur in random data. But this is only true for n-grams of variable data; it is not true for
n-grams that merely repeat a small number of characters (e.g. 0x00 0x01 0x00 0x01 . . . ).

This thesis also noted a potential pitfall of the n-gram approach: when n-grams are based on a
filetype’s content (e.g., English words) rather than structure (e.g., HTML tags, JPEG markers,
etc..). In such cases n-grams will not be predictive. One way to assure that n-grams are based
on structure and not content is to use a variety of different input documents when creating the
training set.

It was hypothesized and shown that long distinctive n-grams are present within filetypes that can
be used as features for file fragment identification. For some filetypes, there were not any long
n-grams that could be used to predict them. Other filetypes had a limited amount of common
short n-grams that were not necessarily distinctive (i.e., the segment markers in a JPEG file) but
still useful for limited success of fragment identification. Lastly, some of the filetypes tested
contained very distinctive long n-grams (augmented by the use of n-gram summarization) that
were excellent predictors of filetype for fragments.
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5.3 Long N-Grams as a Specialized Approach
For full file identification, distinctive n-grams proved to be successful at predicting a file’s type
for files that had distinctive n-grams. Table 4.4 lists 14 (out of 25) filetypes that had a precision
of 66% or better and were determined to contain distinctive n-grams.

However, as Garfinkel et al. stated [9], it is necessary to develop specialized approaches rather
than seeking general solutions to file fragment classification. There are filetypes that had no
distinctive n-grams (textual based files) and performed poorly on an individual basis but seemed
to cluster together to at least identify the content of the files. There were filetypes with limited
distinctive n-grams located only in the file header or sparsely located within the file (JPEG,
BMP, PNG, GZ, ZIP, etc.). These filetypes performed well for full file identification but had
significantly lower scores for fragment identification. Finally, there are filetypes that are filled
with long, distinctive n-grams that are excellent candidates for the straightforward long n-gram
analysis presented in this thesis (PDF, PS/EPS, HTML).

Long n-gram analysis (or at least the approach presented in this thesis) is not a general solution
for file fragment identification, nor is it fully effective for all filetypes in the wild. This thesis
has reaffirmed the research of others and shown that there are many file types for which n-grams
are not effective in identifying either complete files or file fragments.

However, as a specialized approach, long n-gram analysis is effective at file fragment identifi-
cation for some popular filetypes. The following section presents some possible directions for
future work that could possibly enhance the effectiveness of long n-gram analysis for additional
filetype fragments.

5.4 Future Work
5.4.1 More Sophisticated Classification Algorithms
The approach to classification presented in this thesis used a simple scoring algorithm to de-
termine the filetype of a full file or file fragment. A more robust classification algorithm based
on the support vector machine, k-nearest neighbor, or decision tree approaches would almost
certainly improve the identification results for the filetypes that had low precision ratings.

5.4.2 A Larger Vocabulary of Long N-Grams
Long n-gram analysis only needs to be concerned with keeping track of common n-grams. This
thesis focused on n-grams that were common to all files in a set. However, certain filetypes

69



have n-grams that are distinctive yet will not be in every file of that particular type (i.e., optional
HTML tags). Therefore, detecting n-grams that are common to a percentage of the files in a
set will potentially broaden the range of common n-grams for a filetype. For example, rather
than requiring that each n-gram occur in 100% of the files in order to be called common, an
n-gram could only be required to be in 75% of the files or another percentage that suits the
characteristics of the particular filetype. This way the potential of detecting more distinctive
n-grams within a filetype is greater.

After all common n-grams for all the filetypes being tested have been generated, all the n-
grams from the various file types can be placed into a single dictionary. Once the dictionary
is generated, each unknown file or fragment can then be compared to all the n-grams in the
dictionary to produce a vector that will then be fed into a traditional machine learning algorithm.

5.4.3 Embedded Data
File containers can embed files of different types within themselves. Using the long n-gram
approach, the different types of files within a container file could be individually identified.
For example, a PDF classifier may be able to pick out all PDF files and a JPEG classifier may
be able to pick out all JPEG files in a single test set. However, it may be helpful to have any
embedded JPEG data located within and PDF files. In this manner, a PDF file is accurately
identified and further information regarding the content of the PDF can be revealed.

5.4.4 4096-byte Fragments
Modern computer hard drives are beginning to move away from 512-byte sectors and use 4096-
byte (4K) sectors. In a forensics environment, this means that the file fragments recovered
from hard drive images will be 4096-bytes in length rather than 512-bytes. For long n-gram
analysis, the potential for more precise file fragment identification increases since the length
of the fragment will be eight times longer. This may increase the chances of encountering a
distinctive n-gram within a 4K file fragment versus a 512-byte fragment that could increase
overall accuracy of long n-gram analysis.
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APPENDIX A:
Experimental File List

048569.bmp 082168.txt 084437.pub 102487.html 104232.pps 120257.gif
130790.ppt 132946.txt 143976.html 145527.pub 155876.pps 164357.pub
174797.html 179487.eps 182614.pptx 183318.csv 183513.html 184216.pdf
186118.bmp 187783.html 191846.pdf 192402.bmp 198075.html 210492.html
212946.xlsx 215737.java 216689.docx 216694.html 221986.html 223624.docx
233200.pps 241163.txt 241343.txt 249421.html 249730.gz 250560.ppt
258068.gz 263566.pptx 268297.html 270700.png 277473.html 277836.csv
281940.pps 289807.gz 295784.csv 295989.bmp 299759.docx 299765.xlsx
307260.ppt 313486.docx 318133.pptx 320417.html 338033.txt 351480.xml
354675.bmp 359397.ps 359739.ps 365256.pub 365624.png 372437.docx
378278.html 380012.java 388207.ppt 388283.xls 391632.gz 392793.html
393001.html 400769.txt 404068.html 404310.html 411102.xlsx 412637.java
412916.html 424036.html 424037.html 424240.bmp 427953.html 427954.html
428151.html 436938.java 446238.html 458821.xls 461510.html 464336.pps
467037.xbm 469082.pdf 469238.html 472113.html 472719.csv 473856.csv
474088.swf 475598.html 475787.pps 476947.csv 478356.csv 483939.html
486901.doc 500968.xlsx 505158.xls 507479.java 509992.txt 511710.csv
519722.gif 528206.xlsx 529625.csv 539314.swf 547335.ppt 553501.swf
559227.html 563294.html 565081.xml 565864.gz 571993.swf 580687.doc
581671.html 589748.swf 589990.gif 593251.ppt 595118.sql 596250.pptx
598299.docx 599295.dbase3 602072.sql 605377.docx 606936.pptx 606985.pub
609019.pptx 610292.swf 614817.pdf 615326.docx 617418.sql 617738.xml
623300.ppt 624005.pdf 624630.csv 629144.html 629593.xml 631855.swf
637614.sql 640685.xml 640953.html 643587.doc 644273.xml 645187.txt
647659.sql 649414.html 650343.dbase3 652358.ps 653042.xml 654985.swf
656598.ttf 656605.eps 656869.html 657039.txt 657428.html 658291.html
658441.html 658475.html 658611.html 658916.html 659230.html 659719.txt
660568.txt 661130.txt 661635.ttf 661649.txt 661821.txt 662201.txt
662373.txt 662566.txt 663105.txt 663272.html 663635.ps 663823.txt
664511.txt 665018.txt 665201.txt 666048.txt 666383.txt 669189.txt
670890.jpg 671354.eps 672116.jpg 675927.pub 680958.eps 687675.doc
690531.html 694506.html 694534.gz 694669.eps 705948.png 710340.jpg
711872.html 712465.pps 712648.html 712928.java 714314.pdf 714859.html
716691.html 717834.ppt 719492.html 720718.png 729601.pptx 739365.jpg
749043.eps 756794.pdf 759867.txt 764163.pdf 785243.eps 808841.rtf
811459.bmp 817954.xls 819781.eps 819840.gz 821535.png 823904.gif
827462.jpg 827478.gif 836334.java 842644.dbase3 848990.xlsx 858257.pdf
862652.png 868217.eps 874196.bmp 875216.gif 880064.doc 881722.sql
890237.gz 901341.xls 902126.txt 902129.html 905600.pdf 907395.jpg
911726.html 912721.txt 912800.gif 919144.gif 920125.png 920697.png
920706.png 921469.gz 922536.java 923701.eps 924835.gif 927344.pps
927624.pps 931077.txt 934809.java 937277.gz 942196.png 942817.ps
945965.jpg 948335.ppt 949268.jpg 956747.jpg 956880.gif 977633.html
978133.pptx 978134.pptx 985704.html 987041.jpg 988313.pps 988932.txt
994170.html 994278.xbm 996017.pptx

Table A.1: List of files used for Experiment 3. For Experiments 1 and 2, the filenames are
the same with the exception of the file extensions for the reasons discussed in the beginning of
Chapter 4
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APPENDIX B:
Experimental File Fragment List

Table B.1 shows all of the file fragments used for Experiments 2 and 3 in this thesis. Notice
that some byte offsets are sequential to one another. This means that some of the file fragments
utilized had overlapping 512-byte fragments.

Filename Fragment Byte Offsets
048569.bmp 00000, 00001, 00002, 00003, 00004, 00005

082168.txt
00003, 00004, 00008, 00009, 00010, 00018, 00019, 00032
00040, 00045, 00070, 00073, 00082, 00108, 00112

084437.pub 00000

102487.html
00000, 00002, 00005, 00006, 00007, 00009, 00010, 00011
00013, 00014, 00016, 00018, 00019, 00020, 00022

104232.pps
00293, 00345, 00977, 01447, 01659, 01806, 02501, 02560
02782, 03111, 03771, 03962, 04311, 04904, 05004

120257.gif
00001, 00003, 00004, 00007, 00015, 00017, 00024, 00027
00028, 00039, 00045, 00054, 00055, 00064, 00074

130790.ppt
00020, 00039, 00062, 00073, 00074, 00075, 00099, 00114
00149, 00201, 00226, 00253, 00280, 00323, 00328

132946.txt 00000, 00001, 00002, 00003, 00004, 00005

143976.html
00053, 00062, 00070, 00072, 00102, 00110, 00144, 00170
00187, 00215, 00220, 00223, 00226, 00229, 00247

145527.pub 00000

155876.pps
00027, 00080, 00109, 00119, 00128, 00547, 00610, 00625
00684, 00711, 00755, 00858, 00952, 00976, 01024

164357.pub 00000

174797.html
00000, 00001, 00002, 00003, 00004, 00005, 00006, 00007
00008, 00009, 00010, 00011, 00012, 00013

179487.eps
00009, 00024, 00097, 00099, 00106, 00139, 00196, 00346
00396, 00461, 00478, 00483, 00549, 00561, 00579

182614.pptx
00436, 00570, 00671, 00797, 00818, 00831, 00927, 01000
01815, 02131, 02510, 02618, 03709, 03727, 03947

183318.csv 00000, 00001, 00002, 00003, 00004, 00005, 00006, 00007

183513.html
00000, 00001, 00002, 00003, 00004, 00005, 00006, 00007
00008

184216.pdf
00008, 00046, 00069, 00075, 00081, 00120, 00169, 00175
00188, 00191, 00197, 00201, 00215, 00219, 00225

186118.bmp 00000

187783.html
00007, 00016, 00017, 00023, 00028, 00034, 00035, 00036
00041, 00042, 00045, 00048, 00049, 00051, 00056

191846.pdf
00033, 00052, 00108, 00206, 00274, 00372, 00466, 00568
00679, 00781, 00847, 01059, 01210, 01311, 01378
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192402.bmp
00011, 00024, 00067, 00076, 00172, 00189, 00200, 00204
00261, 00279, 00400, 00459, 00471, 00524, 00540

198075.html
00000, 00001, 00002, 00003, 00007, 00008, 00012, 00013
00014, 00016, 00017, 00018, 00020, 00021, 00023

210492.html
00000, 00001, 00002, 00003, 00004, 00005, 00006, 00007
00009, 00010, 00011, 00012, 00013, 00014, 00015

212946.xlsx
00014, 00031, 00044, 00269, 00343, 00500, 00551, 00637
00695, 00838, 00882, 00934, 00947, 01131, 01278

215737.java
00000, 00001, 00002, 00003, 00004, 00005, 00006, 00007
00008, 00009, 00010, 00011, 00012, 00013, 00014

216689.docx
00006, 00011, 00022, 00033, 00058, 00071, 00075, 00091
00092, 00093, 00098, 00103, 00118, 00119, 00120

216694.html
00000, 00004, 00006, 00007, 00008, 00009, 00011, 00012
00014, 00016, 00017, 00022, 00024, 00025, 00032

221986.html 00000

223624.docx
00171, 00289, 00652, 00752, 01140, 01619, 01858, 02008
02443, 02486, 02503, 02645, 02896, 03168, 03468

233200.pps
00010, 00068, 00245, 00281, 00334, 00343, 00402, 00445
00513, 00548, 00562, 00580, 00614, 00615, 00730

241163.txt
00001, 00006, 00011, 00012, 00014, 00016, 00021, 00022
00038, 00051, 00061, 00073, 00075, 00095, 00099

241343.txt
00002, 00018, 00030, 00039, 00043, 00066, 00075, 00087
00091, 00093, 00096, 00100, 00111, 00121, 00124

249421.html
00060, 00253, 00456, 00502, 00715, 00718, 00986, 01108
01154, 01300, 01327, 01329, 01397, 01651, 01720

249730.gz
00000, 00001, 00002, 00003, 00004, 00005, 00006, 00007
00008, 00009, 00010, 00011, 00012, 00013, 00014

250560.ppt
00074, 00087, 00103, 00117, 00133, 00134, 00147, 00158
00160, 00173, 00200, 00202, 00235, 00315, 00333

258068.gz
00000, 00001, 00002, 00003, 00004, 00005, 00006, 00007
00008

263566.pptx
00222, 00422, 00556, 00583, 00633, 00650, 01601, 01633
01693, 01743, 01916, 01990, 02151, 02419, 02586

268297.html
00001, 00008, 00011, 00015, 00025, 00028, 00031, 00036
00037, 00038, 00043, 00044, 00050, 00055, 00057

270700.png
00035, 00077, 00163, 00167, 00190, 00241, 00306, 00323
00326, 00377, 00405, 00420, 00437, 00452, 00496

277473.html
00000, 00001, 00002, 00003, 00004, 00005, 00006, 00007
00008, 00009, 00010, 00011, 00012

277836.csv
00017, 00021, 00034, 00037, 00078, 00085, 00119, 00138
00145, 00212, 00225, 00236, 00261, 00314, 00330

281940.pps
00232, 00239, 00274, 00400, 00472, 00782, 01068, 01172
01299, 01447, 01457, 01507, 01650, 01777, 01887

289807.gz
00001, 00002, 00003, 00005, 00007, 00008, 00009, 00011
00013, 00017, 00018, 00019, 00021, 00029, 00030

295784.csv
00000, 00001, 00002, 00003, 00004, 00005, 00006, 00007
00008, 00009, 00010, 00011

295989.bmp
00049, 00081, 00082, 00159, 00180, 00210, 00213, 00413
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00426, 00672, 00683, 00808, 00890, 00904, 00916

299759.docx
00014, 00022, 00024, 00037, 00042, 00045, 00051, 00064
00065, 00066, 00072, 00078, 00082, 00085, 00102

299765.xlsx
00000, 00003, 00008, 00009, 00011, 00013, 00020, 00021
00026, 00027, 00028, 00029, 00030, 00033, 00035

307260.ppt
02508, 04046, 06487, 08466, 10780, 11464, 12497, 14949
16508, 17284, 20934, 22097, 27057, 27772, 28361

313486.docx
00134, 01723, 01879, 04072, 04414, 05447, 05655, 09518
10913, 11825, 14169, 14545, 15000, 16043, 16412

318133.pptx
00124, 01013, 01048, 01723, 02345, 02497, 04001, 04442
05711, 05777, 05974, 06165, 06862, 07320, 07663

320417.html
00000, 00001, 00002, 00003, 00004, 00005, 00006, 00007
00008

338033.txt
00000, 00003, 00004, 00005, 00006, 00013, 00014, 00015
00016, 00017, 00020, 00021, 00022, 00026, 00027

351480.xml
00000, 00005, 00006, 00009, 00010, 00013, 00014, 00015
00017, 00021, 00022, 00025, 00026, 00027, 00028

354675.bmp
00002, 00005, 00016, 00021, 00028, 00033, 00037, 00064
00068, 00081, 00098, 00109, 00110, 00111, 00115

359397.ps
00090, 00126, 00297, 00490, 00568, 00681, 00819, 01492
01681, 01757, 01849, 01905, 01923, 01926, 02373

359739.ps
00007, 00044, 00078, 00127, 00499, 00580, 00587, 00601
00638, 00682, 00761, 00763, 00832, 00834, 00840

365256.pub 00000

365624.png
00004, 00006, 00011, 00019, 00022, 00024, 00026, 00053
00059, 00075, 00081, 00091, 00097, 00099, 00127

372437.docx
00367, 00409, 00552, 00557, 00608, 00712, 00718, 00828
00893, 00933, 00973, 01019, 01067, 01137, 01331

378278.html
00000, 00001, 00002, 00003, 00004, 00005, 00006, 00007
00008, 00009, 00010, 00011

380012.java
00000, 00001, 00002, 00003, 00005, 00006, 00007, 00010
00011, 00012, 00013, 00014, 00015, 00016, 00017

388207.ppt
00007, 00017, 00041, 00059, 00073, 00088, 00096, 00101
00181, 00205, 00212, 00218, 00225, 00228, 00231

388283.xls
00001, 00006, 00035, 00045, 00061, 00071, 00075, 00085
00089, 00092, 00103, 00105, 00110, 00113, 00137

391632.gz
00120, 00259, 00285, 00330, 00422, 00494, 00668, 00747
01039, 01044, 01062, 01074, 01203, 01267, 01446

392793.html
00000, 00001, 00002, 00003, 00004, 00005, 00006, 00007
00008

393001.html
00000, 00001, 00002, 00003, 00004, 00005, 00007, 00008
00009, 00010, 00011, 00012, 00013, 00015, 00016

400769.txt
00000, 00001, 00003, 00004, 00006, 00011, 00016, 00017
00021, 00022, 00024, 00025, 00027, 00031, 00035

404068.html
00002, 00004, 00006, 00009, 00011, 00013, 00021, 00023
00025, 00032, 00033, 00034, 00036, 00037, 00041

404310.html
00000, 00001, 00002, 00003, 00004, 00006, 00007, 00008
00009, 00010, 00011, 00012, 00013, 00014, 00015
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411102.xlsx
00003, 00008, 00015, 00025, 00062, 00074, 00076, 00081
00104, 00119, 00124, 00129, 00140, 00147, 00155

412637.java
00001, 00007, 00008, 00013, 00015, 00017, 00018, 00020
00022, 00024, 00029, 00034, 00040, 00042, 00044

412916.html
00000, 00001, 00002, 00003, 00004, 00005, 00006, 00007
00008

424036.html
00000, 00001, 00002, 00003, 00004, 00005, 00006, 00007
00008

424037.html
00000, 00001, 00002, 00003, 00004, 00005, 00006, 00007
00008

424240.bmp
00165, 00371, 00975, 01083, 01442, 01473, 01811, 02163
02165, 02601, 02674, 02725, 02741, 02857, 02862

427953.html
00000, 00001, 00002, 00003, 00004, 00005, 00006, 00007
00008, 00009, 00010, 00011

427954.html
00000, 00001, 00002, 00003, 00004, 00007, 00008, 00009
00011, 00012, 00015, 00016, 00017, 00019, 00022

428151.html
00000, 00001, 00002, 00003, 00004, 00005, 00006, 00007
00008, 00009, 00010, 00011, 00012

436938.java
00002, 00004, 00005, 00010, 00014, 00015, 00017, 00019
00020, 00026, 00029, 00030, 00031, 00033, 00039

446238.html
00001, 00003, 00007, 00010, 00014, 00015, 00016, 00017
00022, 00025, 00034, 00045, 00046, 00052, 00065

458821.xls
00035, 00043, 00050, 00066, 00074, 00075, 00125, 00130
00139, 00151, 00152, 00191, 00194, 00204, 00206

461510.html
00000, 00001, 00002, 00003, 00004, 00006, 00011, 00014
00015, 00017, 00018, 00019, 00020, 00021, 00023

464336.pps
00176, 01611, 01748, 02695, 02834, 03321, 03676, 03681
03988, 04582, 05472, 05558, 06332, 06441, 07111

467037.xbm 00000

469082.pdf
00008, 00012, 00013, 00026, 00033, 00037, 00040, 00041
00047, 00054, 00060, 00065, 00074, 00088, 00091

469238.html
00000, 00001, 00002, 00003, 00004, 00005, 00006, 00007
00008, 00009

472113.html
00043, 00057, 00070, 00108, 00116, 00130, 00135, 00138
00140, 00203, 00204, 00206, 00233, 00235, 00240

472719.csv
00000, 00001, 00002, 00003, 00004, 00005, 00006, 00007
00008, 00009, 00010, 00011, 00012, 00013

473856.csv
00009, 00010, 00017, 00020, 00025, 00028, 00034, 00053
00060, 00061, 00067, 00085, 00091, 00125, 00141

474088.swf
00000, 00003, 00009, 00010, 00011, 00012, 00013, 00014
00018, 00019, 00023, 00024, 00025, 00026, 00027

475598.html
00000, 00010, 00011, 00014, 00018, 00019, 00020, 00021
00022, 00026, 00027, 00028, 00029, 00030, 00037

475787.pps
00039, 00044, 00046, 00076, 00086, 00090, 00121, 00133
00194, 00217, 00232, 00245, 00310, 00363, 00470

476947.csv 00000, 00001, 00002, 00003, 00004, 00005, 00006
478356.csv 00000, 00001, 00002, 00003, 00004, 00005

483939.html
00000, 00001, 00002, 00003, 00004, 00005, 00006, 00007
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00008

486901.doc
00000, 00002, 00003, 00007, 00008, 00010, 00016, 00020
00021, 00024, 00025, 00026, 00027, 00030, 00032

500968.xlsx
00000, 00039, 00045, 00048, 00081, 00087, 00093, 00095
00096, 00105, 00111, 00127, 00131, 00132, 00142

505158.xls
00005, 00008, 00009, 00013, 00014, 00015, 00022, 00028
00034, 00041, 00044, 00047, 00054, 00063, 00065

507479.java
00000, 00002, 00003, 00005, 00007, 00008, 00010, 00015
00019, 00021, 00032, 00033, 00034, 00040, 00042

509992.txt
00046, 00096, 00156, 00183, 00196, 00201, 00228, 00230
00232, 00246, 00275, 00282, 00283, 00298, 00307

511710.csv
00000, 00001, 00003, 00004, 00005, 00006, 00007, 00008
00009, 00011, 00012, 00013, 00016, 00017, 00021

519722.gif
00000, 00002, 00006, 00008, 00013, 00015, 00020, 00021
00025, 00028, 00031, 00038, 00039, 00041, 00045

528206.xlsx
00000, 00001, 00002, 00004, 00008, 00009, 00010, 00012
00015, 00016, 00018, 00020, 00022, 00024, 00025

529625.csv
00000, 00001, 00002, 00003, 00006, 00007, 00008, 00010
00011, 00012, 00013, 00015, 00016, 00018, 00019

539314.swf
00000, 00001, 00003, 00005, 00006, 00007, 00008, 00010
00012, 00013, 00014, 00017, 00018, 00020, 00021

547335.ppt
01657, 01792, 02784, 03029, 04014, 04829, 05849, 06131
07078, 07382, 08985, 12147, 12312, 13918, 14310

553501.swf
00035, 00072, 00084, 00098, 00126, 00132, 00148, 00166
00177, 00181, 00193, 00198, 00217, 00228, 00275

559227.html 00000
563294.html 00000

565081.xml
00000, 00001, 00002, 00003, 00004, 00005, 00006, 00007
00008, 00009, 00010

565864.gz
00014, 00029, 00055, 00124, 00132, 00196, 00213, 00218
00237, 00292, 00356, 00360, 00395, 00402, 00428

571993.swf
00001, 00007, 00026, 00031, 00032, 00037, 00038, 00042
00047, 00057, 00058, 00059, 00060, 00064, 00068

580687.doc
00012, 00047, 00050, 00066, 00077, 00079, 00087, 00096
00109, 00112, 00113, 00120, 00122, 00124, 00134

581671.html
00003, 00004, 00005, 00006, 00007, 00008, 00010, 00012
00013, 00014, 00015, 00019, 00021, 00022, 00026

589748.swf
00009, 00042, 00045, 00059, 00071, 00088, 00095, 00100
00150, 00151, 00173, 00182, 00187, 00204, 00216

589990.gif 00000, 00001, 00002, 00003

593251.ppt
00096, 00151, 00155, 00245, 00471, 00533, 00595, 00620
00626, 00634, 00646, 00699, 00822, 00835, 00941

595118.sql 00000, 00001, 00002, 00003, 00004

596250.pptx
02685, 03153, 04977, 06228, 06323, 07414, 08120, 08370
09652, 10332, 11807, 11821, 11875, 13027, 13563

598299.docx
00024, 00068, 00090, 00107, 00108, 00113, 00129, 00137
00147, 00148, 00150, 00159, 00160, 00172, 00193

599295.dbase3
00000, 00001, 00002, 00003, 00004, 00005, 00006, 00007
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00008, 00009, 00010, 00011, 00012, 00013

602072.sql
00000, 00002, 00003, 00006, 00007, 00009, 00010, 00011
00012, 00013, 00014, 00015, 00016, 00017, 00018

605377.docx
00001, 00002, 00004, 00005, 00006, 00007, 00008, 00009
00010, 00011, 00012, 00014, 00015, 00016, 00019

606936.pptx
00378, 00465, 00516, 00637, 00713, 00976, 01404, 01762
01856, 02169, 02236, 02257, 02340, 02701, 02783

606985.pub 00000, 00001

609019.pptx
00173, 00381, 00611, 01106, 01380, 01838, 01958, 04607
04757, 04907, 05139, 05351, 05488, 06202, 06753

610292.swf
00645, 00718, 00918, 01018, 01340, 01617, 01898, 02179
02272, 02463, 03605, 03740, 04005, 04119, 04177

614817.pdf
00052, 00083, 00200, 00276, 00553, 00656, 00720, 00925
01303, 01379, 01520, 01566, 01640, 01656, 01685

615326.docx
00003, 00006, 00007, 00008, 00009, 00012, 00013, 00021
00024, 00025, 00027, 00029, 00032, 00035, 00037

617418.sql 00000, 00001, 00002, 00003
617738.xml 00000, 00001, 00002, 00003, 00004, 00005

623300.ppt
00131, 00336, 00573, 00678, 01517, 01529, 02339, 02435
03161, 03345, 03739, 04074, 04236, 04904, 05189

624005.pdf
00009, 00022, 00030, 00032, 00033, 00041, 00044, 00046
00070, 00073, 00088, 00099, 00105, 00107, 00114

624630.csv
00000, 00001, 00003, 00005, 00007, 00008, 00010, 00011
00012, 00013, 00016, 00017, 00018, 00019, 00020

629144.html
00000, 00001, 00002, 00003, 00004, 00005, 00006, 00007
00008

629593.xml 00000, 00001, 00002

631855.swf
00115, 00527, 00971, 01137, 01293, 01795, 02188, 02307
02367, 02390, 02415, 02439, 02675, 02781, 02959

637614.sql
00000, 00001, 00002, 00003, 00004, 00005, 00006, 00007
00008, 00009, 00010

640685.xml
00001, 00002, 00004, 00006, 00008, 00012, 00013, 00014
00015, 00019, 00020, 00021, 00022, 00023, 00025

640953.html
00000, 00001, 00002, 00003, 00004, 00005, 00006, 00007
00008

643587.doc
00052, 00211, 00280, 00386, 00580, 00661, 00742, 00751
00796, 00889, 00909, 00928, 00932, 01102, 01126

644273.xml 00000, 00001, 00002, 00003, 00004, 00005

645187.txt
00003, 00004, 00006, 00008, 00016, 00017, 00018, 00023
00025, 00034, 00036, 00038, 00039, 00044, 00047

647659.sql 00000

649414.html
00013, 00030, 00031, 00035, 00041, 00042, 00043, 00050
00071, 00081, 00101, 00126, 00128, 00153, 00176

650343.dbase3
00000, 00001, 00002, 00003, 00004, 00005, 00006, 00007
00008, 00009, 00010, 00011, 00012

652358.ps
00000, 00040, 00056, 00066, 00086, 00088, 00097, 00115
00143, 00192, 00245, 00309, 00398, 00501, 00506

653042.xml
00000, 00001, 00002, 00003, 00004, 00005, 00006, 00007
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00008
654985.swf 00000
656598.ttf 00000, 00001

656605.eps
00005, 00006, 00026, 00041, 00051, 00059, 00060, 00079
00084, 00109, 00110, 00117, 00121, 00124, 00131

656869.html 00000
657039.txt 00000, 00001, 00002, 00003, 00004

657428.html
00000, 00001, 00002, 00003, 00004, 00005, 00006, 00007
00008, 00009, 00010, 00011, 00012, 00013, 00014

658291.html
00000, 00002, 00005, 00006, 00007, 00008, 00009, 00010
00011, 00012, 00013, 00014, 00015, 00016, 00017

658441.html
00000, 00002, 00003, 00006, 00007, 00008, 00009, 00010
00011, 00013, 00014, 00016, 00017, 00018, 00020

658475.html
00000, 00002, 00003, 00004, 00005, 00009, 00013, 00014
00016, 00021, 00022, 00023, 00024, 00025, 00029

658611.html
00000, 00001, 00002, 00003, 00004, 00005, 00006, 00011
00013, 00014, 00015, 00016, 00017, 00018, 00019

658916.html
00000, 00001, 00002, 00003, 00004, 00005, 00006, 00007
00008

659230.html
00000, 00001, 00002, 00003, 00004, 00005, 00006, 00007
00008, 00009

659719.txt 00000, 00001, 00002, 00003, 00004
660568.txt 00000, 00001, 00002, 00003, 00004
661130.txt 00000, 00001, 00002, 00003, 00004

661635.ttf
00016, 00030, 00038, 00045, 00069, 00078, 00085, 00096
00109, 00126, 00138, 00144, 00168, 00181, 00211

661649.txt 00000, 00001, 00002, 00003, 00004
661821.txt 00000, 00001, 00002, 00003, 00004, 00005, 00006
662201.txt 00000, 00001, 00002, 00003, 00004

662373.txt
00002, 00004, 00005, 00006, 00007, 00008, 00010, 00011
00013, 00014, 00017, 00018, 00020, 00021, 00023

662566.txt 00000, 00001, 00002, 00003, 00004
663105.txt 00000, 00001, 00002, 00003, 00004

663272.html
00000, 00001, 00002, 00004, 00005, 00008, 00010, 00011
00012, 00014, 00016, 00018, 00020, 00021, 00022

663635.ps
00165, 00180, 00186, 00218, 00247, 00286, 00382, 00429
00447, 00493, 00552, 00605, 00608, 00660, 00663

663823.txt 00000, 00001, 00002, 00003, 00004
664511.txt 00000, 00001, 00002, 00003, 00004
665018.txt 00000, 00001
665201.txt 00000, 00001, 00002, 00003, 00004
666048.txt 00000, 00001, 00002, 00003, 00004
666383.txt 00000, 00001, 00002, 00003, 00004

669189.txt
00003, 00004, 00005, 00006, 00007, 00010, 00011, 00013
00014, 00016, 00017, 00019, 00020, 00022, 00023

670890.jpg
00047, 00130, 00174, 00176, 00253, 00285, 00306, 00316
00326, 00328, 00333, 00377, 00518, 00541, 00568

671354.eps
00001, 00003, 00005, 00007, 00016, 00017, 00021, 00031
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00035, 00049, 00062, 00066, 00079, 00082, 00088

672116.jpg
00005, 00007, 00030, 00038, 00062, 00064, 00079, 00100
00114, 00124, 00128, 00130, 00132, 00135, 00144

675927.pub 00000

680958.eps
00081, 00086, 00093, 00104, 00114, 00337, 00469, 00481
00522, 00527, 00585, 00613, 00720, 00825, 01048

687675.doc
00001, 00003, 00011, 00012, 00023, 00027, 00028, 00033
00035, 00038, 00051, 00053, 00056, 00057, 00065

690531.html
00000, 00017, 00046, 00071, 00089, 00098, 00117, 00122
00128, 00132, 00147, 00164, 00166, 00172, 00180

694506.html
00000, 00001, 00002, 00003, 00004, 00005, 00006, 00007
00008

694534.gz
00021, 00036, 00064, 00092, 00126, 00146, 00176, 00186
00235, 00247, 00284, 00313, 00342, 00358, 00363

694669.eps
00163, 00893, 01433, 01512, 01649, 01779, 02034, 02635
03103, 04133, 04301, 04309, 04467, 05279, 05669

705948.png
00014, 00017, 00028, 00030, 00034, 00047, 00069, 00096
00099, 00119, 00126, 00163, 00172, 00181, 00193

710340.jpg
00000, 00001, 00002, 00003, 00004, 00007, 00008, 00009
00010, 00011, 00012, 00014, 00015, 00016, 00017

711872.html
00000, 00001, 00002, 00003, 00004, 00005, 00006, 00007
00008, 00009, 00010, 00011, 00012

712465.pps
00422, 00438, 00704, 01025, 01540, 01647, 02028, 03271
03661, 05827, 05842, 08222, 08666, 09033, 09508

712648.html
00000, 00001, 00002, 00003, 00004, 00005, 00006, 00007
00008, 00009, 00010, 00011, 00012

712928.java
00000, 00002, 00006, 00016, 00027, 00033, 00039, 00041
00052, 00069, 00092, 00103, 00123, 00124, 00129

714314.pdf
00008, 00011, 00012, 00013, 00017, 00019, 00023, 00024
00042, 00045, 00046, 00050, 00051, 00056, 00064

714859.html
00000, 00001, 00002, 00003, 00004, 00006, 00007, 00008
00009, 00010, 00011, 00012, 00013, 00015, 00016

716691.html
00000, 00001, 00002, 00003, 00004, 00005, 00006, 00007
00008, 00009, 00010

717834.ppt
00000, 00010, 00013, 00023, 00025, 00027, 00031, 00046
00060, 00063, 00066, 00068, 00070, 00091, 00103

719492.html
00000, 00001, 00002, 00003, 00004, 00005, 00006, 00007
00008, 00009, 00010, 00011, 00012

720718.png
00008, 00013, 00033, 00046, 00052, 00070, 00084, 00102
00108, 00113, 00123, 00136, 00143, 00159, 00167

729601.pptx
00768, 01051, 01083, 01922, 02636, 02648, 02864, 03646
03741, 04524, 05037, 06102, 06320, 06798, 06998

739365.jpg
00015, 00020, 00021, 00061, 00095, 00114, 00130, 00143
00187, 00204, 00233, 00271, 00273, 00332, 00333

749043.eps
00004, 00005, 00008, 00011, 00022, 00023, 00028, 00030
00032, 00034, 00036, 00038, 00039, 00043, 00045

756794.pdf
00031, 00137, 00162, 00171, 00197, 00202, 00209, 00264
00280, 00298, 00374, 00406, 00432, 00455, 00469
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759867.txt
00004, 00006, 00018, 00029, 00042, 00044, 00045, 00046
00075, 00081, 00085, 00089, 00091, 00101, 00102

764163.pdf
00000, 00003, 00007, 00009, 00012, 00015, 00018, 00019
00025, 00027, 00031, 00033, 00037, 00039, 00040

785243.eps
00006, 00012, 00014, 00015, 00016, 00019, 00020, 00021
00028, 00039, 00044, 00049, 00050, 00063, 00066

808841.rtf
00003, 00053, 00101, 00120, 00159, 00179, 00193, 00216
00222, 00256, 00261, 00269, 00281, 00287, 00309

811459.bmp
00001, 00002, 00004, 00005, 00008, 00009, 00016, 00018
00019, 00023, 00026, 00029, 00030, 00031, 00033

817954.xls
00040, 00043, 00045, 00056, 00066, 00081, 00089, 00101
00134, 00142, 00169, 00172, 00175, 00199, 00201

819781.eps
00015, 00019, 00021, 00025, 00028, 00035, 00043, 00055
00062, 00064, 00075, 00082, 00084, 00092, 00098

819840.gz
00036, 00108, 00111, 00135, 00164, 00284, 00288, 00296
00305, 00330, 00411, 00412, 00449, 00469, 00491

821535.png
00004, 00008, 00009, 00010, 00011, 00012, 00014, 00015
00019, 00020, 00024, 00025, 00028, 00029, 00030

823904.gif
00011, 00014, 00024, 00026, 00031, 00032, 00043, 00062
00065, 00068, 00075, 00076, 00089, 00099, 00105

827462.jpg
00028, 00055, 00169, 00585, 00613, 00811, 00824, 01300
01342, 01345, 01489, 01568, 01583, 02159, 02189

827478.gif
00007, 00009, 00014, 00030, 00031, 00033, 00048, 00055
00083, 00089, 00100, 00115, 00126, 00133, 00164

836334.java
00017, 00025, 00027, 00028, 00042, 00048, 00059, 00063
00066, 00076, 00079, 00080, 00081, 00085, 00086

842644.dbase3 00000, 00001, 00002, 00003, 00004, 00005, 00006, 00007

848990.xlsx
00009, 00011, 00012, 00013, 00014, 00016, 00021, 00026
00033, 00035, 00036, 00037, 00040, 00041, 00044

858257.pdf
00006, 00039, 00048, 00065, 00070, 00082, 00104, 00124
00125, 00130, 00142, 00145, 00150, 00156, 00166

862652.png
00027, 00040, 00041, 00043, 00051, 00059, 00061, 00074
00075, 00083, 00088, 00101, 00132, 00145, 00146

868217.eps
00006, 00007, 00013, 00019, 00023, 00029, 00037, 00039
00040, 00045, 00046, 00049, 00058, 00061, 00074

874196.bmp
00064, 00093, 00488, 00903, 00946, 01465, 01576, 01598
01621, 01749, 01793, 02003, 02280, 02290, 02778

875216.gif
00008, 00013, 00019, 00040, 00048, 00052, 00054, 00058
00085, 00090, 00093, 00095, 00098, 00099, 00118

880064.doc
00000, 00001, 00003, 00004, 00005, 00009, 00010, 00013
00023, 00032, 00036, 00037, 00039, 00041, 00042

881722.sql
00000, 00004, 00006, 00007, 00008, 00009, 00010, 00011
00012, 00013, 00015, 00017, 00018, 00019, 00020

890237.gz
00022, 00101, 00110, 00119, 00220, 00280, 00391, 00429
00475, 00494, 00504, 00514, 00526, 00548, 00627

901341.xls
00001, 00002, 00006, 00011, 00012, 00013, 00014, 00019
00022, 00025, 00029, 00031, 00032, 00037, 00038
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902126.txt 00000, 00001

902129.html
00010, 00015, 00021, 00030, 00033, 00037, 00048, 00049
00052, 00056, 00086, 00091, 00105, 00130, 00131

905600.pdf
00000, 00001, 00003, 00004, 00005, 00006, 00007, 00008
00010, 00011, 00013, 00014, 00015, 00017, 00019

907395.jpg
00000, 00007, 00008, 00011, 00013, 00014, 00016, 00021
00034, 00039, 00043, 00046, 00048, 00050, 00057

911726.html
00063, 00105, 00159, 00165, 00177, 00179, 00199, 00208
00213, 00321, 00344, 00367, 00424, 00428, 00536

912721.txt 00000, 00001

912800.gif
00004, 00006, 00012, 00014, 00016, 00017, 00024, 00026
00031, 00037, 00041, 00042, 00049, 00052, 00054

919144.gif
00006, 00007, 00014, 00021, 00030, 00032, 00061, 00062
00065, 00075, 00076, 00092, 00095, 00097, 00104

920125.png
00013, 00018, 00027, 00085, 00134, 00157, 00211, 00256
00259, 00290, 00334, 00386, 00432, 00487, 00541

920697.png
00003, 00148, 00208, 00228, 00230, 00258, 00263, 00355
00366, 00403, 00405, 00439, 00464, 00497, 00573

920706.png
00052, 00079, 00118, 00129, 00136, 00182, 00216, 00241
00249, 00269, 00275, 00409, 00428, 00535, 00620

921469.gz
00018, 00056, 00069, 00080, 00092, 00112, 00115, 00118
00119, 00120, 00141, 00142, 00149, 00163, 00169

922536.java 00000, 00001, 00002, 00003, 00004, 00005, 00006

923701.eps
00005, 00006, 00007, 00008, 00009, 00010, 00019, 00023
00024, 00026, 00027, 00029, 00030, 00031, 00034

924835.gif
00046, 00070, 00121, 00220, 00246, 00396, 00410, 00467
00671, 00851, 00926, 01072, 01124, 01133, 01573

927344.pps
00317, 00713, 00894, 00896, 00986, 01032, 01179, 01597
01611, 01881, 01998, 02484, 02535, 02706, 02790

927624.pps
00244, 00311, 00378, 00589, 00681, 00790, 01092, 01237
01347, 01412, 01592, 01666, 01692, 01723, 01911

931077.txt 00000, 00001, 00002

934809.java
00000, 00003, 00005, 00007, 00009, 00011, 00014, 00017
00018, 00021, 00024, 00025, 00026, 00028, 00029

937277.gz
00050, 00055, 00435, 00762, 00765, 01008, 01009, 01115
01136, 01164, 01188, 01399, 01635, 01822, 01868

942196.png
00000, 00001, 00002, 00003, 00004, 00005, 00006, 00007
00008, 00009, 00010, 00011, 00012, 00013, 00014

942817.ps
00006, 00045, 00062, 00149, 00164, 00202, 00233, 00273
00310, 00377, 00406, 00494, 00524, 00632, 00744

945965.jpg
00152, 00181, 00724, 00731, 00830, 00873, 00910, 01266
01382, 01400, 01659, 01777, 01909, 02150, 02203

948335.ppt
01388, 02199, 03556, 03761, 03886, 04947, 05043, 06238
10615, 10618, 11389, 11486, 12119, 14705, 14865

949268.jpg
00030, 00056, 00143, 00332, 00573, 00645, 00700, 00716
00785, 00797, 01161, 01164, 01167, 01226, 01324

956747.jpg
00002, 00007, 00018, 00046, 00072, 00074, 00078, 00084
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00096, 00097, 00101, 00103, 00106, 00114, 00133
956880.gif 00000, 00001, 00002, 00003, 00004, 00005, 00006, 00007

977633.html
00000, 00001, 00002, 00003, 00004, 00005, 00006, 00007
00008, 00009, 00010, 00011

978133.pptx
00127, 00517, 00949, 01197, 01472, 01476, 01514, 03395
03501, 03992, 04443, 05688, 07090, 07205, 07660

978134.pptx
00061, 00062, 00069, 00091, 00120, 00122, 00128, 00165
00210, 00227, 00297, 00306, 00315, 00317, 00326

985704.html
00006, 00009, 00015, 00023, 00024, 00035, 00037, 00044
00047, 00056, 00057, 00060, 00061, 00062, 00064

987041.jpg
00025, 00090, 00428, 00460, 00540, 00680, 00750, 00851
00948, 01014, 01083, 01153, 01163, 01276, 01407

988313.pps
00305, 01417, 01568, 02682, 03414, 03554, 03599, 04314
04640, 04675, 04745, 05075, 05223, 05535, 05598

988932.txt 00000, 00001, 00002
994170.html 00000, 00001, 00002, 00003, 00004, 00005, 00006, 00007
994278.xbm 00000, 00001, 00002, 00003, 00004, 00005

996017.pptx
00201, 00266, 00894, 01413, 02775, 05439, 05498, 06316
06452, 06546, 06773, 06892, 07540, 07787, 08567

Table B.1: List of file fragments used for Experiment 3. For Experiment 2, the filenames are
the same with the exception of the file extensions for the reasons discussed in the beginning of
Chapter 4
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